Search for the Higgs Boson at CERN
Using machine learning
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4 CERN, the LHC and ATLAS

¢ What? Collide high-energetic protons to produce new particles
¢ Why? Understand fundamental nature of matter and its interactions
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Images: CERN, ATLAS Result

e Machine-learning applications |:|( )
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&) Calorimeter GAN

« Challenge: Require up to 10'° simulated
events

¢ Particles formed in collision produce
shower of secondary particles

Latent
NEE)

o Simulation of detector response =10min
with detailed interaction model (Geant4)

* New approach: FastCaloGAN

Output

¢ Improved Wasserstein Generative
Adversarial Networks [1701.078751704.00028]

¢ Up to 1000x faster, good accuracy
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https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/abs/2109.02551

_I Higgs Boson event selection

Higgs Boson produced in one of 10° events ( )

Challenge: Filter events with Higgs Boson

Consider systematic uncertainties for model selection

Datasets: training, validation (model selection), test (data comparison)
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Boosted Decision Tree output Select events with Higgs
[Phys. Lett. B 805 (2020) 135426] [ATLAS-CONF-2021-044]

|
nextgen_ai FRANK SAUERBURGER 2021-11-12 -// 7


https://lhc-xsecs.org/
https://www.sciencedirect.com/science/article/pii/S0370269320302306
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-044/ATLAS-CONF-2021-044.pdf

£ Summary

o Large datasets of measured and simulated events
— Collider-based physics is well suited for machine learning

e Machine learning used at all stages within ATLAS Collaboration

o Further applications in high-energy physics
o NNs to interpolate between different simulated datasets

[e]

Directly constrain New Physics with machine learning risos.co013]

[¢]

FPGA-based NNs to trigger events (40MHz event rate) [JinsT 13 (2018) 07, Po70271

[¢]

NNs to simulate initial proton configurations (2109.026711

OF %
e Exciting interplay 4 4 |
high-energy physics « machine learning
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https://arxiv.org/abs/1805.00013
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/2109.02671

4! RNN 7-Lepton identification

¢ Challenge:

Identification of short-lived 7-leptons g 10! ErE T T T e e e e
o . . ~§ g ATLAS Simulation Preliminary
o 7-leptons have distinct signature in 8wk 3
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e Appear in interesting decays £ 10 |
(e.g. Higgs Boson) i ;
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o Better performance with RNN (solid lines)

[ATL-PHYS-PUB-2019-033]
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https://cds.cern.ch/record/2688062/

