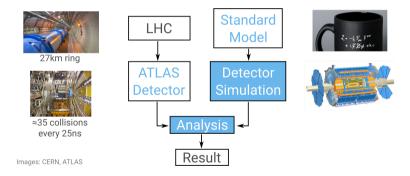
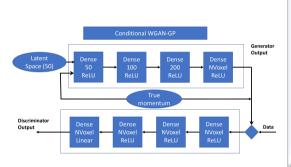
Search for the Higgs Boson at CERN using machine learning


FRANK SAUERBURGER

CERN, the LHC and ATLAS

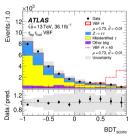
- What? Collide high-energetic protons to produce new particles
- Why? Understand fundamental nature of matter and its interactions



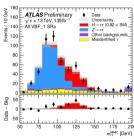
Machine-learning applications in this talk (in the summary)

Calorimeter GAN

- **Challenge:** Require up to 10^{10} simulated events
- Particles formed in collision produce shower of secondary particles
- Simulation of detector response ≈10min with detailed interaction model (Geant4)
- New approach: FastCaloGAN
- Improved Wasserstein Generative Adversarial Networks [1701.07875.1704.00028]
- Up to 1000× faster, good accuracy



[2109.02551]


Higgs Boson event selection

- Higgs Boson produced in one of 10⁹ events (<u>lhc-xsecs.org</u>)
- Challenge: Filter events with Higgs Boson
- Consider systematic uncertainties for model selection
- Datasets: training, validation (model selection), test (data comparison)


Boosted Decision Tree output

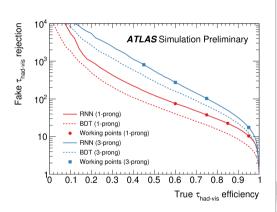
[Phys. Lett. B 805 (2020) 135426]

Select events with Higgs

[ATLAS-CONF-2021-044]

- Large datasets of measured and simulated events
 - → Collider-based physics is well suited for machine learning
- Machine learning used at all stages within ATLAS Collaboration
- Further applications in high-energy physics
 - NNs to interpolate between different simulated datasets
 - Directly constrain New Physics with machine learning [1805.00013]
 - FPGA-based NNs to trigger events (40MHz event rate) [JINST 13 (2018) 07, P07027]
 - NNs to simulate initial proton configurations [2109.02671]
- Exciting interplay high-energy physics

 → machine learning



RNN au-Lepton identification

- Challenge: Identification of short-lived τ -leptons
- au-leptons have distinct signature in detector
- Appear in interesting decays (e.g. Higgs Boson)

$$H o au au o\{\pi^\pm,\pi^0,
u,\gamma,\dots\}$$

- Recurrent in the number of decay products
- Better performance with RNN (solid lines)

[<u>ATL-PHYS-PUB-2019-033</u>]