
C
ER

N
-T

H
ES

IS
-2

01
7-

07
7

24
/0

3/
20

17

MASTERTHESIS

Search for H → ττ Decays in the
Lepton-Hadron Final State using
Multivariate Techniques in
Proton-Proton Collisions at√
s = 13TeV with the ATLAS

Detector at the LHC

Frank Sauerburger

Albert-Ludwigs-Universität Freiburg





MASTERTHESIS

Search for H → ττ Decays in the
Lepton-Hadron Final State using

Multivariate Techniques in Proton-Proton
Collisions at

√
s = 13TeV with the

ATLAS Detector at the LHC

submitted by

Frank Sauerburger

SUPERVISOR

Prof. Dr. Karl Jakobs

March 17, 2017

Albert-Ludwigs-Universität Freiburg



Version: final-cds-1-gd056416
Date: June 29, 2017
Author: Frank Sauerburger

Physikalisches Institut
Albert-Ludwigs-Universität Freiburg



Erklärung

Hiermit versichere ich, die eingereichte Masterarbeit selbständig verfasst und kei-
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Abstract

Abstract
A multivariate analysis (MVA) using machine learning techniques to
study the Standard Model decay of the Higgs boson to two τ leptons
(H → τ+τ−) is presented. The analysis focuses on the decay channel,
in which one τ decays leptonically and the other τ decays hadronically.
The background is estimated with a combination of Monte Carlo simula-
tion and data-driven methods. A boosted decision tree (BDT) is trained
on the background model and employed to classify events into back-
ground and signal to enhance the sensitivity of the analysis. The results
of the analysis are compared to a cut-based analysis. The analysis is
performed with a dataset of proton-proton collisions at a center-of-mass
energy

√
s = 13 TeV taken with ATLAS detector at the LHC during

Run 2.

Zusammenfassung
Eine multivariate Analyse (MVA) des Standardmodelprozesses des Zer-
falls des Higgsteilchens in zwei τ Leptonen (H → τ+τ−) wird präsentiert.
Die Analyse konzentriert sich auf den Zerfallskanal, indem ein τ lepto-
nisch und ein τ hadronisch zerfällt. Der Untergrund wird durch eine
Kombination von Monte Carlo Simulationen und datengestützten Me-
thoden abgeschätzt. Ein Boosted Decision Tree (BDT) wird auf dem
Untergrundmodel trainiert und verwendet, um Ereignisse als Untergrund
oder als Signal zu klassifizieren, und um dadurch die Sensitivität der
Analyse zu erhöhen. Die Ergebnisse der Analyse werden mit einer cut-
basierten Analyse verglichen. Die Analyse verwendet Daten aus Proton-
Proton Kollisionen bei einer Schwerpunktsenergie von

√
s = 13 TeV, die

vom ATLAS-Detektor am LHC während Run 2 aufgezeichnet wurden.
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Preface

The present document constitutes my master thesis and summarizes the results of
my work during the last year.

The main focus of this thesis is a multivariate analysis (MVA) to search for Higgs
particle decays to two τ leptons. Most of the effort was spent on the optimization
of the multivariate analysis. This includes the usage of an elaborate cross validation
scheme and a private Monte Carlo production to increase the training statistics. The
goal of this optimization is to enhance the sensitivity of the multivariate analysis.
As a comparison a cut-based analysis is also presented. The final results from a
likelihood fit for the multivariate analysis and cut-based analysis are compared.

The first chapter introduces the topic of H → ττ interactions and shows the
importance of this decay channel. Chapter 2 summarizes the Standard Model and
shows how the Brout–Englert–Higgs mechanism is used to generate the masses of
fermions, especially τ leptons. Chapter 3 outlines the phenomenology at hadron col-
liders and the physics of the Higgs boson. The following chapter, Chap. 4, describes
the Large Hadron Collider and the ATLAS experiment, which is used to collect
the data for this thesis. The first four chapters give an introduction to the basics
of hadron colliders and Higgs analyses with the ATLAS detector. Readers already
familiar with this type of analysis can skip these chapters and start with the first
analysis specific chapter, Chap. 5.

Chapter 5 outlines the analysis strategies of the multivariate analysis and the cut-
based analysis. There the background model of the analyses and the event selection
is defined. Chapter 6 constitutes the main chapter of this thesis. It describes the
machine learning techniques used for the MVA and shows the procedure used to
optimize it. Finally, Chap. 7 describes a likelihood fit and shows its results. The
two analysis strategies are compared in terms of their sensitivity. The last chapter,
Chap. 8, summarizes the conclusions of this thesis and outlines future improvements.

The submission of this master thesis is a milestone for my personal life and my
experience with the physics community. This seems to be the correct moment to
thank all the people that helped me during the last year. Certainly this work would
not have been possible without your help.

First of all I would like to thank Karl Jakobs for his support and for giving
me the opportunity to work on such an interesting topic. I would also like to thank
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Minoru Hirose, Karsten Köneke and Lei Zhang for guiding me and giving me valuable
advice. Thank you for sharing your experience. Furthermore I would like to thank
the whole HLeptons analysis group without whom this analysis would not have been
possible. Especially I would like to thank Clara Nellist who also helped me out if
had I problems with the English language. This is also the time to thank all the
group members in Freiburg. Without you the last year would not have been such a
great experience. Thank you for creating this wonderful work environment.

Frank Sauerburger March 2017, Freiburg



Notation

The following conventions and notations are used throughout this thesis. Velocities
are measured as fractions of the speed of light (c = 1), while angular momenta
are measured in multiples of the reduced Planck constant (h̄ = 1). The Einstein
summation rule is used, which means a summation over an index is implied, if the
index appears as an upper and low index in a summand, e.g., γµ ∂µ →

∑
µ γ

µ ∂µ.
The term lepton is reserved for charged leptons from the first and second generation
(electrons e, and muons µ), with the exception of chapter 2 where lepton also refers
to neutrinos and tau leptons.

In the analysis specific chapters, lepton or leptonically decaying tau (or simply
lep) refers to the charged lepton originating from a leptonically decaying tau, i.e.,
τ− → `−ν̄`ντ . The visible products of a hadronically decaying tau, i.e., τ− → qq̄′ντ ,
are referred to as a hadronically decaying tau, a tau or τhad (or simply had).

The term leading (sub-leading) particle refers to the decay product with the
largest (second largest) transverse momentum. Various kinematic variables can be
expressed or calculated for different particles. The particle under study is mentioned
in the superscript of the kinematic variable, this means pj0T refers to the transverse
momentum pT of the leading jet j0. Kinematic variables, which depend on two
particles are written with both particles as its superscript, this means ∆ηlep had is
the difference in pseudorapidity of the hadronically decaying tau (had) and the lep-
tonically decaying tau (lep). Truth quantities, i.e., physical quantities not changed

or smeared out by detector effects, are annotated with a hat, so for example p̂lepT

denotes the truth transverse momentum of the lepton.
Bold face variables are three-component objects in the context of Quantum Field

Theory and multi-dimensional vectors in the context of machine learning and the
likelihood fit. Throughout the thesis log(x) refers to the natural logarithm of x.
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CHAPTER 1

Introduction

In 2012 the ATLAS (A Toroidal LHC ApparatuS) [1] and CMS (Compact Muon
Solenoid) [2] collaborations announced the discovery of a new particle [3, 4] at the
Large Hadron Collider (LHC) [5]. The discovered particle is compatible with the
Higgs boson predicted by the Standard Model of particle physics. The Higgs boson,
proposed in 1964 by Higgs [6, 7], Brout and Englert [8], Guralnik, Hagen and Kibble
[9] is an important ingredient in the Standard Model. The Higgs boson solves several
problems of the Standard Model in an easy and clean way. To only mention some
aspects, the Higgs boson is necessary to restore unitarity and prevent the prediction
of divergent event rates in WW scattering [10]. Another important implication
of the Higgs boson and the Brout–Englert–Higgs mechanism (BEH) is that the
weak gauge bosons can acquire mass. Without the BEH mechanism, massive gauge
bosons are forbidden by the Standard Model since they would violate important
properties of the model. In 1983 the massive gauge bosons W and Z were discovered
experimentally [11, 12]. At that time these two bosons were the heaviest observed
elementary particles, which contradicts the requirement of massless gauge bosons in
the standard model without the BEH mechanism.

Besides being responsible for the masses of gauge bosons, the BEH mechanism
can also be employed to generate the masses of fermions by introducing a Yukawa
coupling of the fermions to the Higgs field. Such a coupling implies that the Higgs
particle can decay into pairs of fermions. These couplings have been measured for
tau (τ) leptons and bottom (b) quarks [13]. The precise measurement of this coupling
is an important test of the Standard Model prediction. The context of this thesis is
the study of H → ττ decays. The Higgs boson couples in principle to all massive
fermions, the coupling strength, however, depends on the mass of the fermion. Since
tau leptons are the heaviest leptons, the decay channel H → ττ is an experimentally
promising channel to measure Higgs boson to lepton couplings.

The coupling of τ leptons has been studied in proton-proton collisions at a center-
of-mass energy of

√
s = 7 TeV and

√
s = 8 TeV during Run 1 [14, 15]. Two analysis

strategies were pursued in parallel. The main strategy used multivariate techniques
to increase the sensitivity of the analysis. As a cross check a cut-based analysis was
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2 Chapter 1. Introduction

performed.
This thesis focuses on the decay H → τlepτhad where one τ lepton decays lepton-

ically and the other τ decays hadronically. The thesis uses data from proton-proton
collisions at a center-of-mass energy of

√
s = 13 TeV taken with the ATLAS detector

during Run 2.



CHAPTER 2

Theory

This chapter introduces the basic theoretical concepts relevant for this thesis. The
theoretical framework of the Standard Model of particle physics is Quantum Field
Theory. The full rigor of Quantum Field Theory is not necessary to understand the
relevant concepts of this thesis, therefore an attempt has been made to keep the
mathematical formalism as simple as possible. The material in this chapter is based
on Refs. [10] and [16], the presentation of the material follows Ref. [10].

The first section gives an overview of the Standard Model of particle physics. It
outlines its structure and its concepts. The following section focuses on Quantum
Electrodynamics (QED) and illustrates the importance of symmetries in particle
physics. Section 2.3 describes how to include weak interactions in the same model.
Section 2.4 introduces spontaneous symmetry breaking and shows how this mecha-
nism can be exploited to give mass to the gauge bosons. The chapter closes with
Sec. 2.5, which applies the principle of spontaneous symmetry breaking also to gen-
erate mass terms for charged fermions.

2.1 The Standard Model

The Standard Model of particle physics (abbreviated as SM in this thesis) was
developed during the second half of the 20th century. The SM describes three of
the four known forces, namely the strong force, electromagnetic force and the weak
force. The Standard Model predicts the evolution and interaction of all known
particles governed by these three forces. The effect of the fourth force, gravitation,
is currently not measurable at the microcosm of elementary particles. Gravitation
is not incorporated in the Standard Model of particle physics.

The elementary particles of the Standard Model can be arranged into two groups:
bosons, with integer spin, and fermions, with half-integer spin. The group of fermions
consists of two types of particles: leptons and quarks. The matter that surrounds
us is made of protons (p), neutrons (n) and electrons (e). Protons and neutrons are
composite particles and consist of up (u) and down (d) quarks. The electron is an
elementary particle and belongs to the group of leptons. The electron, the up and

3



4 Chapter 2. Theory

Table 2.1: List of all particles in the Standard Model. Masses are in MeV, charge in
multiples of the proton charge. The generations are separated by horizontal lines for quarks
and leptons. Values are rounded and are taken from Ref. [17], except the Higgs boson mass
mH = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV, which is taken from Ref. [13]. The number
of printed digits does not correspond to uncertainty. Only an upper limit is shown for the
neutrino masses.

Particle Charge Mass

Quarks

up u +2/3 2.2

down d −1/3 4.8

charm c +2/3 1, 275

strange s −1/3 95

top t +2/3 173, 210

bottom b −1/3 4, 180

Leptons

electron e− −1 0.511

e neutrino νe 0 < 2 · 10−6

muon µ− −1 106

µ neutrino νµ 0 < 0.19

tau τ− −1 1, 777

τ neutrino ντ 0 < 18.2

Bosons

gluon g 0 0

photon γ 0 0

W± boson ±1 80, 385

Z boson 0 91, 188

Higgs boson H 0 125, 090

the down quark together with the electron neutrino comprise the first generation
of particles. Each particle in the first generation has a heavier sibling particle in
the second and third generation with the same properties, but different mass. The
heavier siblings of the electron are the muon (µ) and the tau (τ). The muon belongs
to the second generation, the tau to the third generation. The particles of the SM
and their properties are listed in Tab. 2.1. Forces between fermions are mediated
by the exchange of bosons: gluons (g) for the strong force, photons (γ) for the
electromagnetic force, and W and Z bosons for the weak force. Ultimately, there
is the long-sought-for Higgs boson (H), which is a necessary ingredient of the SM.
Fermions, heavy gauge bosons and the Higgs boson itself acquire their mass by
interacting with the Higgs field.

The theory of QED is a part of the SM. QED describes the electromagnetic
interactions of all charged particles. The force is mediated by the exchange of
photons. QED is introduced in Sec. 2.2 and extended in Sec. 2.3 to incorporate
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also weak interactions mediated by the Z and W bosons. Besides the electroweak
sector of the SM, there is Quantum Chromodynamics (QCD) which describes strong
interactions mediated by gluons. In QCD a color charge is introduced for quarks.
That means quarks come in three different colors: red, green and blue. Since QCD is
not crucial for the BEH mechanism for leptons, QCD is not discussed in this thesis.

Symmetries play a fundamental role in the structure of SM and guide the con-
struction of interactions within the model. All three forces can be associated with a
symmetry group. The interactions are invariant under the local transformations of
the symmetry groups. The full symmetry group of the Standard Model is

SU(3)C︸ ︷︷ ︸
QCD

×SU(2)Y × U(1)L︸ ︷︷ ︸
electroweak

(2.1)

where SU(n) denotes the special unitary group of dimension n and the U(1) denotes
the one-dimensional unitary group. The indices will become apparent in the course of
this chapter. The symmetry group of electroweak interactions is detailed in Sec. 2.3.

The success of the SM continued in 2012 with the discovery of the Higgs boson by
the ATLAS and CMS collaborations at CERN (European Organization for Nuclear
Research) [3, 4]. The predictions of the SM have been verified in various analyses
and experiments with remarkable precision. Despite its success, the SM does not
explain all of the observed phenomena. For example, it does not predict important
parameters of the theory, such as the masses of the particles. Furthermore the obser-
vation of neutrino oscillation indicates that neutrinos have non-zero mass. Massive
neutrinos, however, are forbidden in the SM. There are other models or extensions
to the SM, to solve some of the problems, but these models are beyond the scope of
this thesis.

2.2 Quantum Electrodynamics

Quantum Electrodynamics describes the interaction of electrically charged particles
with photons. The theory is formulated as a Quantum Field Theory (QFT). As the
name indicates a central part of QFT are fields. Excitations of fields correspond
to particles. The dynamics can be derived from the Lagrangian density L. Strictly
speaking the term Lagrangian refers to L =

∫
dx3L, but it is customary to use

Lagrangian also for the Lagrangian density. The Lagrangian density takes the role
of the Lagrangian in classical mechanics. Since the topic of this thesis is about
H → ττ decays, the Lagrangian

L = ψ̄(iγµ ∂µ −m)ψ. (2.2)

of a free, i.e., non-interacting, tau lepton of mass m is considered. The field as-
sociated with the tau is ψ. The tau lepton is a fermion, therefore the field ψ is
a four-component object called spinor. A spinor should not be confused with a
Lorentz four-vector. The equation of motion for the field ψ can be derived by using
the quantum field theoretical analogous of the Euler–Lagrange equation

∂µ

(
∂L

∂ (∂µψ)

)
− ∂L
∂ψ

= 0. (2.3)
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Without loss of generality ψ and its adjoint spinor ψ̄ = ψ†γ0 can be treated as
independent variables, and thus Eq. (2.3) can be used for ψ̄ to derive the equation
of motion of the free tau lepton

(iγµ ∂µ −m)ψ = 0 (2.4)

also know as the Dirac equation.

The previous example considered a non-interacting tau lepton. QED describes
how charged particles interact via the exchange of photons. To incorporate the
photon field A, we can use a handy tool: local gauge symmetries. Symmetries have
always been a useful tool in physics, especially in high energy physics. Maxwell’s
equations of electrodynamics exhibit a global gauge symmetry. That means one
is free to choose a global gauge by adding ∂µΛ to the fields of electrodynamics.
In the quantum field theoretical equivalent of Maxwell’s electrodynamics, QED, a
global gauge symmetry means that the Lagrangian is invariant under global phase
transformations ψ → ψ′ = e−iqλψ of the field, where q is the charge operator.
An additional phase in Eq. (2.2) cancels in both ψ̄ψ terms and thus leaves the
Lagrangian invariant.

A local gauge symmetry on the other hand means that the phase depends on the
position xµ, λ = λ(xµ) (hence local). The Lagrangian presented in Eq. (2.2) is not
invariant under the local gauge transformation

ψ → ψ′ = e−iqλ(x)ψ, (2.5)

because the derivation in Eq. (2.2) produces an additional term of −iqψ̄γµ( ∂µλ)ψ,
which does not cancel with any other term in the Lagrangian.

The invariance can be restored with the help of a new field: the vector field A of
the photon. The derivative in the Lagrangian is replaced by the covariant derivative
Dµ = ∂µ + iqAµ. The new field is required to transform according to

Aµ → A′µ = Aµ + ∂µλ (2.6)

under the local gauge transformation. Substituting this into the full Lagrangian
yields

L = ψ̄(iγµ ∂µ −m)ψ︸ ︷︷ ︸
free τ

− 1

4π
FµνFµν︸ ︷︷ ︸
free γ

− (qψ̄γµψ)Aµ︸ ︷︷ ︸
interaction

(2.7)

where the term −1
4π F

µνFµν with Fµν = ∂µAν − ∂νAµ has been added. This term
corresponds to the free Lagrangian of the photon field, similarly to equation (2.2) for
the tau lepton. This Lagrangian accounts for the dynamics of both fields, the mass
m of the tau lepton and the interaction between the tau lepton and the photon. It
is instructive to define the current density of QED as

jemµ = qψ̄γµψ. (2.8)

The interaction term in the Lagrangian corresponds to the contraction of the current
density and this photon field.
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This final Lagrangian is now invariant under local gauge transformations. By
imposing the condition of local gauge invariance, one ends up with the Lagrangian of
the tau lepton and the photon field and their interactions. Local gauge symmetries
give a guide line on how to introduce the interactions based on a symmetry group.
The symmetry transformations in QED belong to the unitary group U(1), i.e.,
e−iqλ ∈ U(1), where the charge operator q is the generator of the group. This
symmetry group is rather simple. The next section extends this idea to a larger
symmetry group.

2.3 Electroweak Unification

The Glashow–Weinberg–Salam model (GWS) unifies electromagnetic and weak in-
teractions into a single theory. The previous chapter was based on a local gauge
transformation from the 1-dimensional unitary group U(1). For the electroweak
unification this symmetry group is extended to

SU(2)L × U(1)Y (2.9)

where the SU(2) is the 2-dimensional special unitary group. The fermions are cast
into left-handed doublets and right-handed singlets. Here left- and right-handedness
actually refers to chirality 1

2(1± γ5) eigenstates and not to helicity eigenstates. The
right-handed singlets1

eR, µR, τR, uR, dR, . . . (2.10)

do not transform under SU(2)L symmetry transformations. The left-handed dou-
blets

χL =

(
νe

e

)
L

,

(
νµ

µ

)
L

,

(
ντ

τ

)
L

,

(
u

d

)
L

, . . . (2.11)

are affected by SU(2)L transformations, hence the subscript L for left-handed.
The other symmetry group of the GWS model, U(1)Y , is similar to the one dis-

cussed in the previous section. The difference is that the generator of the symmetry
is the hypercharge Y and not the electromagnetic charge q as it was in QED. The
hypercharge of the particles in the SM is listed among other properties in Tab. 2.2.

Similarly to the current density jemµ in Quantum Electrodynamics the GWS
model introduces charged weak currents from lepton-neutrino interactions as

j±µ = χ̄Lγµσ
±χL (2.12)

using the usual linear combination σ± = 1
2(σ1±iσ2) of Pauli matrices denoted by σi.

Motivated by the Gell-Mann–Nishijima formula q = I3 + 1
2Y , which relates charge

q, third component of isospin I3 and weak hypercharge Y , one can define a current
density of weak hypercharge as

jYµ = 2jemµ − χ̄Lγµσ3χL. (2.13)

1Fermion fields are denoted with f instead of ψf in order to avoid cluttering up the notation
with indices.
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Table 2.2: List of the charge q, the third component of the weak isospin I3 and the weak
hypercharge Y for quarks and leptons. Quantum numbers for the first generation are taken
from Ref. [10].

Particles q I3 Y

uL, cL, tL 2/3 1/2 1/3

uR, cR, tR 2/3 0 4/3

dL, sL, bL −1/3 −1/2 1/3

dR, sR, bR −1/3 0 −2/3

e−L , µ−L , τ−L −1 −1/2 −1

e−R, µ−R, τ−R −1 0 −2

νe, νµ, ντ 0 1/2 −1

The GWS model postulates a coupling of the three weak isospin currents j =
1
2 χ̄LγσχL with σ = (σ1, σ2, σ3) to the vector boson field W , and a coupling of the
weak hypercharge current jY to a vector field B, with coupling strength gw and 1

2g
′

respectively. The relevant term in the Lagrangian reads

L1 = −i
[
gwjµ ·W µ +

1

2
g′jYµ B

µ

]
. (2.14)

The physical fields of the W boson are W± = 1√
2
(W 1

µ∓ iW 2
µ) and its coupling to the

fermion fields can be extracted directly from the Lagrangian. In this theory, the two
neutral fields W 3 and B mix to produce the physically observed fields, the photon
A and the Z0 (

Aµ

Zµ

)
=

(
cos θw sin θw

− sin θw cos θw

)(
Bµ

W 3
µ

)
. (2.15)

The angle θw is referred to as the weak mixing angle. This model is able to explain
the observed electromagnetic and weak interactions, including β-decays. The theory
had its glorious moment, when the theoretically predicted W and Z bosons were
discovered at CERN in 1983 [11, 12].

Despite the success of this model, there is a flaw in the theory. The Lagrangian
can not contain a mass term for the Z or W bosons. A term like 1

2m
2BµBµ breaks

gauge invariance under the transformations in Eq. (2.9). The gauge bosons of the
GWS model can not have a mass. This is fine for the photon, as it is in fact mass-
less. For the Z and W bosons, however, this is not consistent with experimental
measurements. The Z boson mass mZ = (91.1876± 0.0021) GeV [17] is experimen-
tally measured to high precession and not compatible with a theory of a massless Z
boson. The W boson mass is mW = (80.385± 0.015) GeV [17].

Similarly the Lagrangian can also not contain a mass term for fermions. By
using the properties of the chirality operators 1

2(1± γ5), the mass term of a tau can
be written as

−mτ̄τ = −m(τ̄RτL + τ̄LτR). (2.16)
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φ
V

(φ
)

Figure 2.1: Illustration of the potential V (φ) with µ2 < 0 and λ > 0.

In contrast to the right-handed spinors τR, which are not affected by the SU(2)L
transformations, the left-handed spinors τL are transformed by elements of the
SU(2)L group, which makes this mass term not gauge invariant.

To maintain the gauge invariance of the Lagrangian, another method is required
to describe how the gauge bosons and fermions can acquire mass. The solution to
this problem is the Brout–Englert–Higgs mechanism by spontaneously breaking the
symmetry of the Lagrangian.

2.4 Spontaneous Symmetry Breaking

The idea behind spontaneous symmetry breaking is, that the Lagrangian exhibits
a certain symmetry, but the system is not in its ground state in the absence of all
field excitations, i.e., φ = 0. The framework of QFT is a perturbative approach,
which is valid for small deviations from the ground state of a system. This means
in order to use the usual framework, the Lagrangian has to be expanded around its
ground state. Using perturbation theory around φ = 0, i.e., not around the ground
state of the system, is valid only if one could include infinite orders of perturbation
theory. When translated fields are introduced, such that the system is in its ground
state in the absence of all field excitations, the original symmetry is still inherent
in the Lagrangian, but it is hidden. The BEH mechanism, which was suggested by
Higgs [6, 7], Brout and Englert [8], Guralnik, Hagen and Kibble [9] exploits this to
generate the mass terms for bosons and fermions.

Consider a field φ and the potential

V (φ) = µ2φ†φ+ λ(φ†φ)2 (2.17)

with µ2 < 0 and λ > 0. The potential is sketched in Fig. 2.1. The system is not in
its ground state for φ = 0, but is invariant under reflections φ → −φ. In order to
utilize the field to generate the mass terms for the bosons, φ becomes a composite
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of four scalar real fields φi

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.18)

The potential V (φ) does not have a unique minimum, there is rather a manifold,
which minimizes the potential. This means there is some freedom in choosing the
ground state around which one would like to expand the Lagrangian. The presen-
tation of this topic is especially convenient, if one chooses the ground state as

φ =
1√
2

(
0

v

)
. (2.19)

To exploit the spontaneous symmetry breaking to generate the masses of the gauge
bosons Z and W , one has to couple the corresponding fields to the field φ in the
following way:

L2 =

∣∣∣∣(−igσ2 ·Wµ − i
g′

2
Bµ

)
φ

∣∣∣∣2 (2.20)

where |x|2 = x†x. If this is written out explicitly, the mass term of the W boson
becomes apparent with mW = 1

2vg. Equation (2.15) can be used on the remainder

of equation (2.20). The mass of the Z boson becomes mZ = 1
2v
√
g2 + g′2.

By expanding the Lagrangian around its ground state, which is not at φ =
0 due to the functional form of V (φ), the gauge bosons can acquire mass. This
method of spontaneous symmetry breaking to generate the mass terms, is called the
Brout–Englert–Higgs mechanism. The last step is to employ the same mechanism
to generate mass terms of fermions, for example τ leptons.

2.5 Fermion Masses

In the Standard Model, the same doublet φ, which generates the masses of the
heavy gauge bosons, can be used to generate the masses of leptons. To achieve this
a Yukawa interaction between the lepton fields and the Higgs field is introduced.
The relevant term in the Lagrangian for τ leptons is

L3 = −Yτ

[
(ν̄τ , τ̄)L

(
φ+

φ0

)
τR + τ̄R(φ−, φ̄0)

(
ντ

τ

)
L

]
. (2.21)

The combination of the left- and right-handed doublets and the doublet φ is invariant
under SU(2)L × U(1)Y symmetry transformations. Expanding the field φ around
the ground state

φ(x) =
1√
2

(
0

v + h(x)

)
(2.22)

transforms Eq. (2.21) into

L′3 = − Yτ√
2
v(τ̄LτR + τ̄RτL)− Yτ√

2
(τ̄LτR + τ̄RτL)h. (2.23)
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Figure 2.2: Comparison of the measured coupling strengths of different particles to the
Higgs boson and the prediction of the Standard Model. Data points use data from the
ATLAS and CMS experiments from Run 1. The plot is extracted from [13].

The first term corresponds to the mass term of the lepton with the mass m = Yτv√
2

.

The coupling parameter Yτ can be chosen such that the predicted mass matches
the observed mass. The standard model is thus not able to predict the masses of
fermions, they are merely free parameters in the theory, which need experimental
input to determine their value.

The second term in L′3 describes the interaction of the lepton and the Higgs
boson. This is the term in the Lagrangian that is responsible for the decay of H →
ττ . The coupling strength of the Higgs boson to fermions is therefore proportional
to the masses of the fermions. The measurements of the coupling strengths of the
Higgs boson to other particles show impressive agreement with the SM prediction.
The coupling strength measurements are summarized in Fig. 2.2.
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CHAPTER 3

Particle Physics Phenomenology

Many experiments in high energy physics are conducted by colliding particles at high
center-of-mass energies. The Large Hadron Collider near Geneva with the ATLAS
detector is no exception to this. The analysis methods of the experimental data rely
on the comparison of event rates in one way or another. It is therefore instructive
to look at some of the phenomena at particle colliders, specifically proton-proton
colliders such as the LHC.

The first section of this chapter introduces the concept of cross sections at hadron
colliders. Section 3.2 defines the term luminosity and relates it to the event rate of
a process. Sections 3.3 and 3.4 describe phenomenological effects encountered at
proton-proton scattering at the LHC. The chapter closes with Sections 3.5 and 3.6
with the discussion of the production and decay of the Higgs boson at the LHC.

3.1 Cross Sections and Parton Distribution Functions

Reactions in high energy physics are characterized by their cross section σ. Consider
the particles a and b in the initial state and a single final state particle c. Given the
Lagrangian of the Standard Model one can derive the cross section σ(a+ b→ c) for
this elementary process. This is detailed in Refs. [10] and [16]. One complication
arises in proton-proton collisions by the fact, that the colliding particles are not
point-like, elementary particles. In this context the cross section σ(a + b → c) is
called partonic cross section, because it describes a process at the level of partons,
the constituents of the proton. The proton consist of quarks and gluons, therefore
the internal structure of the proton has to be taken into account. The initial protons
are denoted by A and B and the remnant of the two protons by X. The process at
the hadronic level reads A + B → c + X. The internal structure of the proton A
is quantified by the parton distribution function fa,A(x,Q2), where x is the Bjorken
variable, which denotes the fraction of total momentum of the proton that is carried
by the parton a, and Q2 is the squared four-vector of the momentum transferred in
this process. The parton distribution function fa,A(x,Q2) gives the probability to
find particle a in A with the momentum fraction x when probing with an interaction

13
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of Q2. Integration over the momentum fractions xa, xb of particles a, b and summing
over all particles a, b that contribute to a+ b→ c, yields the hadronic cross section
[18]

σ(A+B → c+X) =∑
a,b

∫ 1

0

∫ 1

0
dxa dxb fa,A(xa, Q

2) fb,B(xa, Q
2) σ(a+ b→ c). (3.1)

This approach relies on the concept of factorization and its factorization scale µF
[19], which determines the separation of the hard scattering processes captured in
σ(a+ b→ c) and the structure of the proton f . The predicted cross sections depend
on the factorization scale µF and the renormalization scale µR, which determines
the evaluation of the coupling strength. Both scales are non-physical quantiles and
give rise to systematic uncertainties of the predicted cross sections.

3.2 Luminosity

The event rate with which a certain physical process is observed in collider experi-
ments depends on the cross section σ of the process (on the hadronic cross section
in proton-proton collision) and on properties of the particle collider. The lumi-
nosity L combines several properties of the collider and the particle beams into a
single quantity. Consider two particle beams in a circular collider such as the LHC
with a perfectly Gaussian profile of width σx and σy in the transversal plane. The
beams consist of n1,2 particles and circulate at a frequency f . The (instantaneous)
luminosity L is given by [16]

L = f
n1n2

4πσxσy
. (3.2)

The expected event rate Ṅ can then be calculated with

Ṅ = σL. (3.3)

Integrating over a period of time T and introducing the integrated luminosity Lint =∫
T Ldt, yields the total number of expected events during the period T

N = σLint. (3.4)

3.3 Hadronization

The final state of the hard scattering process might contain particles with non-
vanishing color charge. Due to the confinement of QCD, these particles can not
be observed separately. The colored final state particles have to form color-neutral
particles. This process is referred to as hadronization. Perturbation theory breaks
down in QCD for low transfered momenta, therefore hadronization can not be cal-
culated within the realm of perturbative QFT. Different methods are used in Monte
Carlo generators to simulate this process. One method is to consider the potential
energy when separating two particles with color charge. When the energy reaches
the threshold of quark-anti-quark creation, new particles are created. This process
is repeated until stable particles without color charge are formed [15].
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3.4 Underlying Event And Pile-Up

Section 3.1 considered the process of two protons A and B colliding to produce
particle c. The final state contains particle c but also the remnants of the two protons
X. Particle c is produced in a hard scattering process, whereas the remnants undergo
soft scattering. Usually c and X are detected in the experiment. The detector signal
of X is referred to as the underlying event. As perturbation theory can not be applied
in this case, a phenomenological model is employed in the Monte Carlo generators
to simulate the underlying event.

At the LHC, the proton beams are partitioned into 2808 bunches, each bunch
consists of the order of 1011 protons [5]. During each bunch crossing inside the de-
tector, multiple proton-proton collisions take place, which are referred to as in-time
pile-up events. With the high instantaneous luminosity during 2016 data taking,
the number of interactions per bunch crossing in the ATLAS detector reached val-
ues exceeding 35. To model this large number of pile-up interactions, the simulated
detector response of inclusive proton-proton events is combined with the actual de-
tector response of the process under study. Details of the simulation process are
described in Sec. 4.4.

3.5 Higgs Boson Production

One of the goals of the ATLAS experiment was to discover the Higgs boson. This
goal has been achieved in 2012 [3]. At the LHC there are different production
mechanisms of the Higgs boson. The production cross sections at the LHC depends
on the center-of-mass energy

√
s. The production cross sections can be found in

Fig. 3.1. The two most important processes for this analysis are gluon fusion (ggF)
and vector boson fusion (VBF). The corresponding leading order Feynman diagrams
are shown in Fig. 3.2. The two production mechanisms can be identified by their
detector signature.

According to Fig. 3.1 gluon fusion is the dominant Higgs boson production chan-
nel at the LHC with a center-of-mass energy of

√
s = 13 TeV. Gluons are present

in proton-proton collisions since the strong force, which holds the proton together,
is mediated by gluons. In ggF, two gluons couple to a virtual fermion loop. The
fermions in the loop annihilate to produce a Higgs boson. The largest contribution
comes from virtual top quarks in the loop, since the coupling strength of fermions
to the Higgs boson depends on the mass of the fermion and the top quark is the
heaviest fermion, see Tab. 2.1. In vector boson fusion, two quarks in the protons
radiate virtual W± or Z bosons which fuse to form a Higgs boson. The cross section
for VBF at

√
s = 13 TeV is about one order of magnitude lower than that for ggF.

However, the process has a crucial role for this analysis, because the VBF production
mode has a clear detector signature.

Other Higgs boson production mechanisms at the LHC are V H and tt̄H, where
V = W±, Z. These processes have negligible contributions for this analysis and are
therefore not considered.
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Figure 3.1: Expected cross sections of various processes in proton-(anti)proton collisions
as a function of the center-of-mass energy. Below 4 TeV proton-antiproton collisions are
assumed, above this threshold proton-proton collisions are shown. The vertical lines indicate
the center-of-mass energies

√
s = 1.96 TeV for Tevatron, and

√
s = 7 TeV,

√
s = 8 TeV and√

s = 14 TeV for the LHC. Gluon fusion is denoted by ggH. Figure taken from Ref. [20].
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Figure 3.2: Leading order Feynman diagrams of the two most important Higgs boson
production mechanisms for this analysis, gluon fusion (left) and vector boson fusion (right).

Table 3.1: Comparison of branching ratios of different decay channels of the Higgs boson
with mH = 125 GeV [21].

Decay Channel Branching Ratio

H → bb̄ 5.824 · 10−1

H →W+W− 2.137 · 10−1

H → τ+τ− 6.272 · 10−2

H → cc̄ 2.891 · 10−2

H → ZZ 2.619 · 10−2

H → gg 2.187 · 10−2

H → γγ 2.270 · 10−3

3.6 Higgs Boson Decay

The Higgs boson is an extremely short-lived particle with a total width predicted to
be ΓH = 4.07 MeV [21]. According to the Standard Model, it can decay into different
particles depending on their masses. Important Higgs boson decay channels and
their branching ratios are listed in Tab. 3.1.

This thesis focuses on the decay channel H → ττ . Tau leptons couple directly
to the Higgs particle. Since they are the heaviest lepton, they present a way to
assess the SM coupling of the Higgs boson to leptons. Tau leptons are also short-
lived particles with a life time of (290.3± 0.5) · 10−15 s [17]. Most tau leptons decay
before they reach the detector. The decay of a tau lepton can be grouped into two
classes: leptonic decays, where the tau decays into an electron or a muon (and the
appropriate neutrinos), and hadronic decays, where the tau decays into quarks (and
an (anti)-tau neutrino). The leading order Feynman diagrams of these two processes
are shown in Fig. 3.3. Table 3.2 lists the branching ratios of the Higgs boson to the
analysis sub-channels lep-lep, had-had and lep-had, where the tau leptons from the
decay of the Higgs boson both decay leptonically, both decay hadronically and where
one tau decays leptonically and the other one decays hadronically.
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Table 3.2: Comparison of branching ratios of different H → ττ decay sub-channels.
Branching ratios calculated from the tau-to-leptons branching ratio of 35.24% [17].

Decay Sub-Channel Branching Ratio

H → τlepτlep 12.4 %

H → τlepτhad 45.6 %

H → τhadτhad 41.9 %

τ
ντ

q′

q
W ∗

τ
ντ

l

νl

W ∗

Figure 3.3: Feynman diagrams of hadronic (left) and leptonic (right) tau lepton decay.
Particles and anti-particles are not distinguished in this figure, the diagrams exist for τ+

and τ− decays.



CHAPTER 4

The Large Hadron Collider and the ATLAS Experiment

Over the last century the field of high energy physics was born and the experiments
and the necessary experimental effort grew. The research center CERN in Geneva
hosts several large scale experiments, one of which is the Large Hadron Collider,
which is able to deliver proton-proton collision at unprecedented center-of-mass en-
ergy. One of the large-scale experiments at CERN is ATLAS. The data used in this
thesis has been recorded by the ATLAS detector. Simulated events used in this the-
sis have been processed within the ATLAS collaboration. This chapter gives a brief
overview over the Large Hadron Collider in Sec. 4.1 and the ATLAS experiment in
Sec. 4.2. Section 4.3 outlines how particles are identified and reconstructed. The
chapter closes with a brief discussion of how Monte Carlo events are produced in
Sec. 4.4.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator near Geneva [5]. The
collider is capable of accelerating heavy ions, such as lead, and protons. As this
thesis studies only proton-proton collision, the collisions involving lead, are not
considered. At the time of writing the LHC is the particle accelerator operating at
the highest center-of-mass energy. The design energy for proton-proton collisions is√
s = 14 GeV, while the data analysed in this thesis were collected at

√
s = 13 GeV,

the highest thus far achieved center-of-mass energy of any collider in the world. The
accelerator is housed in an underground tunnel, which was formerly used for the
Large Electron-Positron (LEP) collider. The circumference of the LHC is about
27 km.

The high center-of-mass energy at the LHC is achieved by using several acceler-
ator stages, which successively increase the energy of the particles. The final stage,
the LHC, consists of two evacuated circular beam pipes. Both proton beams are
bent by superconducting dipole magnets. The strength of the magnetic fields is the
limiting factor for the center-of-mass energy. Each beam is partitioned into 2808
bunches each consisting of approximately 1011 protons. The two beams are brought

19
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Figure 4.1: Sketch of the ATLAS detector and its components [1].

in collision at four interaction points.

Detectors are built around each collision point, to measure the interaction prod-
ucts. The two large, general-purpose experiments at the LHC are ATLAS and CMS.
They are designed to study fundamental interactions and to search for new physics.
Two other large-scale experiments at the LHC, namely ALICE and LHCb, investi-
gate interactions of heavy ions and decays involving b-hadrons, respectively.

4.2 The ATLAS Experiment

The ATLAS collaboration built, maintains, and operates the ATLAS detector, which
is a general-purpose detector at the LHC. The detector nearly covers a solid angle
of 4π around the interaction point. The cylindrical detector design has a forward-
backward symmetry and the axis of the cylinder is aligned with the beam axises.
Its length is 44 m with a diameters 25 m. The detector is split into several different
components. The primary detector consists of an inner detector, calorimeters and
muon spectrometer. Due to the high instantaneous luminosities at the LHC, a special
trigger system has to be used, to select the events, which are permanently recorded.
The different parts of the detectors are summarized in the following sections. A
more detailed description can be found in [1]. In the course of the detector upgrade
between Run 1 and Run 2, some details of the detector have been changed. The
description here considers the state of the detector after the upgrade, as it was used
to collect the data for this thesis. Figure 4.1 shows an illustration of the ATLAS
detector.
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4.2.1 Coordinate System

The ATLAS collaboration employs a right-handed Cartesian coordinate system, its
z-axis is aligned with the beam axis. The x-axis is pointing to the center of the LHC
ring and the y-axis is pointing upwards. It is useful to introduce a coordinate system
(r, φ, θ) with r =

√
x2 + y2, φ = arctan2(x, y) and θ = arctan2(r, z). The interaction

point is located at the center of the coordinate system. The pseudorapidity η is
introduced as η = log tan(θ/2). If the quantities are used to express momenta, the
pseudorapidity η equals the rapidity y for massless particles. The rapidity has the
nice property, that rapidity differences ∆y are invariant under Lorentz boosts along
the z-axis, therefore it is customary to use the coordinate system (r, φ, η).

4.2.2 Inner Detector

The inner detector (ID) is the part of the detector closest to the beam pipe. The
inner detector can be further split into the Pixel Detector, Semiconductor Tracker
(SCT) and Transition Radiation Tracker (TRT). The inner detector is emerged in
a 2 Tesla magnetic field from a superconducting solenoid around the inner detector.
Charged particles are bent due to the magnetic fields. From the hit positions of
the particles, it is possible to calculate the curvature of the particle trajectory. The
inner detector is therefore a valuable tool to measure the momentum of charged
particles.

The silicon Pixel Detector consists of four cylindrical layers and covers the radial
extension up to 12 cm. The forward regions up to |η| < 2.5 are covered by three
disks. The first layer of the Pixel Detector, and therefore the layer closest to the
interaction point, is the Insertable B-Layer (IBL) [22]. Its radial extension covers
the range from about 3 cm to 4 cm around the particle beam. This layer has been
installed in 2014 between Run 1 and Run 2 [23]. The IBL provides important input
to identify b hadrons, as they travel a measurable distance before they decay, and
thus form a secondary vertex. The Pixel Detector consists of about 80 million pixels
in total with a minimal size of 50× 250µm2.

The SCT encloses the Pixel Detector. It consists of four layers in the central
region and nine disks in the forward regions covered with silicon strip detectors. The
accuracy of the SCT in the barrel region is 17×580µm2.

The Transition Radiation Tracker is made of drift tubes and polypropylene and
polyethylene fibers. The TRT is used to measure primary ionization from traversing
charged particles and to measure transition radiation, which occurs when charged
particles pass materials with different dielectric constants. The TRT covers the
pseudorapidity range of |η| < 2. It provides only information in the φ direction with
a accuracy of 130µm.

The tracking detector is designed [1] to have a momentum uncertainty of

σpT
pT

= 1%⊕ 0.05% · pT ·GeV−1, (4.1)

where a⊕ b denotes the addition in quadrature
√
a2 + b2.
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4.2.3 Calorimeter

The calorimeters are used to measure the energy of particles by absorbing them.
The ATLAS detector features two types of calorimeters. The inner one, the elec-
tromagnetic calorimeter, is intended to contain showers initiated by electrons and
photons. Hadrons deposit only a fraction of their total energy in the electromagnetic
calorimeter. The hadronic calorimeter encloses the electromagnetic calorimeter and
is intended to fully absorb the shower initiated by hadrons and to measure their
energy. The shape of the energy deposition in both calorimeters depends on the
particle type and therefore provides information for particle identification.

The electromagnetic and the hadronic calorimeter are sampling calorimeters.
The active medium of the electromagnetic calorimeter is liquid argon (LAr), which
is interleaved with lead absorbers. The calorimeter covers the barrel region up
to |η| < 1.475. The thickness of the electromagnetic calorimeter is greater than 22
radiation lengths (X0) in the barrel region. The end cap wheels cover pseudorapidity
ranges up to |η| < 3.2. The electromagnetic calorimeter provides a fine segmentation
of up to (∆η,∆φ) = (0.0031, 0.1) in the inner most layer of the barrel region. This
provides important information for the identification of π0 → γγ decays, which occur
in the decay of τ leptons. The relative energy resolution of the electromagnetic
calorimeter is designed [1] to be

σE
E

= 0.7%⊕ 10%√
E ·GeV−1

. (4.2)

The hadronic calorimeter is built around the electromagnetic calorimeter. It
consists of three parts: the hadronic tile calorimeter in the barrel region, the hadronic
end caps and the liquid argon forward calorimeter. The barrel region is a sampling
calorimeter of scintillating tiles and steel absorbers and covers the pseudorapidity
range |η| < 1.7. The end cap wheels are sampling calorimeters with liquid argon as
active medium and interleaved copper absorbers. The end caps cover the range 1.5 <
|η| < 3.2. The liquid argon forward calorimeters cover the pseudorapidity range from
3.1 to 4.9. It is a combination of electromagnetic and hadronic calorimeter. The first
layer is a sampling calorimeter with copper absorbers for electromagnetic showers,
whereas the second and third layer uses tungsten as absorber material for hadronic
showers.

The granularity of the hadronic calorimeter is (∆φ,∆η) = (0.1, 0.1) for 1.5 <
|η| < 2.5 and is therefore coarser compared to the electromagnetic calorimeter. The
granularity is expected to be sufficient, since hadronic showers tend to be wider
compared to electromagnetic showers. The barrel region extends from an inner
radius of 2.28 m to an outer radius of 4.25 m, which corresponds to 9.7 interaction
lengths (λ). The design energy uncertainty [1] for hadronic jets of the barrel region
and the end cap calorimeters is

σE
E

= 3%⊕ 50%√
E ·GeV−1

. (4.3)

4.2.4 Muon System

The Muon System (MS) constitutes the outer most part of the detector. A toroidal
magnet provides a magnetic field to bend the trajectory of the muons. Based on
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the curvature a momentum measurement between 3 GeV and a few TeV is possible.
The barrel region of the Muon System provides coverage of the pseudorapidity region
|η| < 1.7. Four end cap wheels extend this coverage up to |η| < 2.7. Several different
detector technologies are used. The barrel region consists of monitored drift tubes
which have a spacial resolution of 35µm. In detector regions, where the total particle
flux exceeds the limits of the monitored drift tubes, cathode strip chambers are used.
Additionally resistive plate chambers are used for triggering purposes. The end cap
wheels are also equipped with thin gap chambers. The design momentum resolution
[1] is

σpT
pT

= 10% (4.4)

for muons with transverse momentum pT = 1 TeV. In order to achieve this the Muon
System must reach position measurement accuracies in the z direction of 50µm or
better.

4.2.5 Trigger

Due to the high instantaneous luminosity and the very large total pp cross section at
the LHC, see Fig. 3.1, it is not possible to store the detector response for every single
bunch crossing. In order to reduce the event rate from 40 MHz to about 1 kHz two
different trigger stages are used: the level 1 (L1) trigger and the high level trigger
(HLT).

The first level consists of specialized hardware, which takes information from
the Muon System and the calorimeters as inputs. The first level trigger searches
for regions of interest in the detector response, which indicate an event relevant for
physics analyses. The trigger either discards an event or forwards the information to
the high level trigger within 2.5µs. The detector sub-systems are read out, if the L1
trigger accepts an event. At this stage the event rate is reduced to about 100 kHz.

The second stage, the high level software trigger, is implemented on commercially
available hardware. The high level trigger uses the information gathered by the L1
trigger, but has also access to more information from the detector including the
tracking detectors. The high level trigger performs a full event reconstruction. The
reconstruction process is similar to the offline event reconstruction. The HLT takes
the final decision within 0.2 s, whether an event should be stored, and achieves the
desired event rate of about 1 kHz. Approximately 1 GB/s of data is written to disk.

4.3 Reconstruction and Particle Identification

Measured data events consist of recorded measurements of the detector response. As
outlined in Sec. 4.4, the detector response for Monte Carlo events is simulated. The
information from data and Monte Carlo is fed to the reconstruction algorithms in
order to identify the physical particles in the event and their properties as measured
by the detector. The description of the reconstruction is based on Ref. [15].

The reconstruction starts by examining the hits of the inner detector. Recon-
structed hits are subject to a Kalman filter to search for tracks. The identified tracks
are subject to track quality criteria. Tracks with too few hits are discarded. Several
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properties of the remaining tracks are calculated including the origin of the track in
the z direction. Vertex candidates are chosen from the distribution of z positions of
the tracks. The vertex with the largest sum of squared transverse momenta (

∑
p2T)

is the primary vertex.
The energy deposits in the electromagnetic and hadronic calorimeter are sub-

ject to clustering algorithms. The algorithm is required to be invariant under
collinear and infrared radiation of particles in a jet. The topological clustering is
seeded with calorimeter cells, whose signal exceeds the threshold tseed. Neighbour-
ing cells are added to the topological clusters if their signal exceeds the threshold
tneighbour. Furthermore all cells whose signal exceeds tcell are added to the most sig-
nificant, adjacent seed cluster. The jet reconstruction uses TopoClusters built with
(tseed, tneighbour, tcell) = (4, 2, 0) · σ, where σ is the expected noise in the calorimeter
cells. An anti-kt [24] algorithm is used to reconstruct jets based on the TopoClusters.
The anti-kt algorithm introduces the the distance measures

dij = min
(

(piT)−2, (pjT)−2
) (∆Rij)2

r2
, (4.5)

di = (piT)−2 (4.6)

for the clusters i, j, where ∆Rij is the geometrical distance between cluster i and
j in the η-φ plane, and piT is the transverse momentum associated with cluster i.
The clustering depends on the free parameter r. The distance measures di and dij
are evaluated for all clusters and all pairs of clusters, respectively. If the minimal
distance is of type di, the algorithm declares cluster i as a jet and removes cluster i
from the list of clusters. If the minimal distance is of type dij , the algorithm merges
clusters i and j. The procedure is repeated, until all clusters are merged or declared
as jets.

Jets initiated by b hadrons can be identified due to the long lifetime of b hadrons.
The decay products of the b hadrons originate from a secondary vertex in a measur-
able distance from the primary vertex. This is commonly referred to as b-tagging
and can be used to suppress backgrounds including b hadron decays.

The electron reconstruction uses a sliding window algorithm to search for energy
clusters in the electromagnetic calorimeter with an associated track in the inner
detector. Several criteria including the shower shape information, the quality of the
track and the quality of the track-to-cluster association are used to discriminate
against other background processes such as electrons from photon conversion in the
inner detector. Three working points are defined, namely tight, medium and loose,
which correspond to a signal efficiency of 75%, 85% and 95%, respectively.

Muons escape the detector with minimal energy deposition in the detector. Elec-
trons and photons are usually contained in the electromagnetic calorimeter. The
hadronic calorimeter is intended to contain hadronic showers. Therefore a track in
the Muon System is a clear signature of a muon in the event.

The detector signature of a tau depends on its decay mode. The decay of a tau
lepton can be grouped into two classes: leptonic decays and hadronic decay. The
corresponding Feynman diagrams are shown in Fig. 3.3.

In case of a leptonically decaying tau, the tau decays directly to an electron or
muon and two neutrinos. Neutrinos do not interact with the detector and therefore
escape the detector unmeasured. Since the neutrinos carry momentum, the signature
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of these neutrinos is missing transverse energy Emiss
T . Missing transverse energy

Emiss
T = −

∣∣∑
i p

i
T

∣∣ is the momentum required to balance the transverse momenta
piT of all visible products i in the event. This includes soft tracks and the products
of the hard scattering process. The electron or muon can hardly be distinguished
from prompt electrons or muons. A leptonic decaying tau presents itself as a light
lepton and is therefore often simply referred to as lepton.

In case of a hadronically decaying tau, the tau decays to quarks and a neutrino.
The presence of the neutrino also leads to missing transverse energy Emiss

T similar
to the leptonic case. The quarks hadronize and in most cases form charged π±

and neutral pions π0 [17]. The pions are reconstructed as jets in the calorimeters.
The shower shape, however, is different if the shower was initiated by a tau or by
QCD processes. Showers from taus are more collimated due to the relatively small
mass of the tau compared to its large momentum and the low number of resulting
hadrons. A boosted decision tree (BDT, see Sec. 6.1.2) is trained to discriminate
against jets. Similarly to the electron, three signal efficiency working points tight,
medium and loose are defined. The working points correspond to a reconstruction
and identification efficiency of 45%, 55% and 60% for 1-prong, and 30%, 40% and
50% for 3-prong decays [25].

4.4 Monte Carlo Generator and Detector Simulation

The production chain for Monte Carlo events can be divided into three steps. This
devision into three steps is not universal. The details of the individual steps are
beyond the scope of this thesis, only a brief overview of the concepts is described
here. The three steps are: event generation, simulation of the detector response and
digitization.

The first step is the actual event generation. This step includes calculating the
matrix element of the simulated process. Decays of intermediate particles, which
decay in-flight, are simulated to resemble the physical processes in the detector.
This step also comprises the hadronization mentioned in Sec. 3.3. Additionally, the
radiation of additional particles in the initial (ISR) and final (FSR) state is consid-
ered. The output of this stage is a tree-like1 decay structure of particles. The tree
indicates the decay products of intermediate particles, similarly to an family tree.
All the particles are annotated with their four-vector momentum. The kinematics
of the events are therefore completely determined after the event generation.

The next step in the chain of Monte Carlo production is usually to simulate
the response of the detector material. For this, a complete and detailed three-
dimensional model of the detector is used. This step comprises the simulation of
detector material and the interaction of the decay products of the pp scattering with
the detector material. The output of this step is a precise map of energy depositions,
commonly referred to as hits.

There are different algorithms to simulate the interactions of the inclining parti-
cles and the detector material. The procedure called Full Simulation (FS) performs
a very detailed probabilistic simulation, taking all secondary particles into account,

1The complexity of this structure is not limited to a tree. I fact, a simple reaction such as
A + B → C∗ → D + E can not be represented in a tree like structure. The side of the decay
products, however, in this case D and E is usually limited to a tree-like structure.
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which are produced in interactions of generated or other simulated particles with
the detector material. The full simulation of the detector is time consuming and
takes of the order of ten minutes for a single event on a single CPU core.

An alternative approach is to parameterize the average detector response as
a function of the momentum of the particles, and thus avoid to simulate all the
secondary particles independently. This approach is called ATLFAST-II (AF-II). A
single event can be simulated within about 10 seconds on a typical CPU core.

Next in the production chain is the digitization. As described in Sec. 3.4 several
scattering processes occur during one bunch crossing. This is not considered in the
event generation step. To account for pile-up, inclusive pp interactions have been
generated and simulated. These samples are intended to not introduce any bias
in the process composition and are therefore called minimum bias events. The hit
information from minimum bias events is merged with the hit information of the
process under study.

The detector components measure an analog signal (for example by collecting
charge) and turn this signal into a digital value, which can then be processed and
stored on disk. The digitization step performs the conversion from (pseudo) analog
signals to a digital values by simulating the read out systems.

The generated Monte Carlo after the digitization step corresponds to measured
data recorded with the detector. The reconstruction and derivation is repeated for
Monte Carlo to be able to compare the measured distributions to the Monte Carlo
expectation.
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Analysis Strategy

Similarly to the analysis strategy in Run 1, the analysis presented in this thesis pur-
sues two different kinds of analysis methods: a cut-based approach and a multivari-
ate approach. The multivariate analysis (abbreviated as MVA) in Run 1 provided
a higher sensitivity and was ultimately selected as the main analysis method. The
cut-based analysis (abbreviated as CBA) was used a backup and cross check [14].

The cut-based analysis method uses conditions on kinematic variables to select a
region in phase space where the signal contribution is enhanced. Usually the cuts are
simple threshold or cutoff conditions on kinematic variables, such as pT. By doing
this, the selected region is a rectangular volume in phase space. The possibilities
of selecting a specific region in that way are therefore geometrically limited. The
selection of cuts is usually guided by a combination of physical insight and studies
based on Monte Carlo events to optimize the cuts. The advantage of the cut-based
analysis is, that the selection of a region in phase space is directly apparent from
the cut flow. The cuts are applied sequentially and studied separately as opposed
to a multivariate analysis.

The multivariate analysis of this thesis also uses cuts on the kinematic variables
to select a region in phase space, similar to a cut-based analysis, but the selected
volume is much larger and the signal-over-background ratio does not reach the purity
from the cut-based analysis. Multivariate methods are used within this volume. This
means that the kinematic variable space is considered as a whole [19], as opposed to
the cut-based analysis which considers the cuts sequentially. This analysis method
is therefore able to employ correlations between kinematic variables of the event and
select much more complex structures in phase space. The multivariate analysis is
closely related the field of machine learning and pattern recognition. An algorithm
is trained on Monte Carlo events. During the training the algorithm learns how to
identify signal-like regions in phase space. When the algorithm is used on real data
the algorithm can check if the event belongs to this interesting region and therefore
classify events whether they are signal-like or background-like. The details of the
multivariate analysis algorithms are shown in Sec. 6.1.

This thesis presents both analysis methods and compares their results. Both

27



28 Chapter 5. Analysis Strategy

Table 5.1: Summary of all triggers used for this analysis. Different single lepton triggers
are used in 2015 and 2016.

Lepton Flavor Year Trigger

Electron

2015

HLT e24 lhmedium L1EM20VH

HLT e60 lhmedium

HLT e120 lhloose

2016

HLT e24 lhtight nod0 ivarloose

HLT e60 lhmedium nod0

HLT e140 lhloose nod0

Muon

2015
HLT mu20 iloose L1MU15

HLT mu40

2016
HLT mu24 imedium

HLT mu50

analysis methods share the same triggers and data taking periods shown in Sec. 5.1,
the same analysis specific kinematic variables explained in Sec. 5.2, the same back-
ground and signal model detailed in Sec. 5.3, the same preselection cuts listed in
Sec. 5.4 and the same control regions as defined in Sec. 5.7. The analysis method
specific event categorization is presented in Sec. 5.5 for the cut-based analysis and
in Sec. 5.6 for the multivariate analysis.

5.1 Data Taking

The analysis presented in this thesis uses data recorded with the ATLAS detector
during Run 2 in 2015 and 2016. The analysis is restricted to datasets where all
detector subsystems were operational and the Large Hadron Collider bunch spacing
was 25 ns. To maintain data quality, only events with a primary vertex, which has at
least two associated tracks, are considered. The analysis uses single lepton triggers
for electrons and muons. The trigger properties and thresholds differ between 2015
and 2016 due do different instantaneous luminosities. The triggers used for this
analysis are summarized in Tab. 5.1. An overall logical OR of the triggers is used to
select the events. An event triggered by any of the triggers is used for the analysis.
The leading lepton in the analysis is required to match the lepton, which caused the
trigger to fire.

The integrated luminosity of data taken in 2015 is L2015
int = 3.2 fb−1. The contri-

bution from data taken in 2016 is L2016
int = 10.0 fb−1, which gives a total integrated

luminosity of Lint = 13.2 fb−1.
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5.2 Analysis Specific Quantities

The analysis defines several quantities derived from kinematic variables of an event.
Some of the derived quantities are exclusively used in the multivariate analysis, oth-
ers are specific to the cut-based analysis. The remainder of this section summarizes
important quantities used in this analysis.

Missing transverse energy Emiss
T = −

∣∣∑
i p

i
T

∣∣ is defined as the transverse mo-
mentum that is needed to balance the visible components of the event in the
transverse plane.

Transverse mass mT of the lepton and Emiss
T is defined as

mT =

√
2 plepT Emiss

T (1− cos(∆φ)) (5.1)

where ∆φ is the angle between the lepton and Emiss
T in the transverse plane.

Visible mass refers to the invariant mass of the visible decay products in the detec-
tor. For example mlep had

vis refers to the visible mass of the lepton-τhad system,

and mjets
vis denotes the invariant mass of all jets in the event.

Missing Mass Calculator The visible mass of the tau decay products is not ex-
pected to match the Higgs boson mass, because the neutrinos involved in the
decay carry away momentum. The missing transverse momentum of all neu-
trinos in the event is quantified as the missing transverse energy Emiss

T . The
missing mass calculator [26] performs a likelihood scan that takes the momen-
tum and angular information of the lepton, the tau and the missing transverse
energy into account. This method yields the most probable mass mMMC of
the di-tau system, i.e., the mass of the Higgs boson system.

Total transverse momentum ptotalT is the magnitude of the vectorial sum of the
transverse momenta of all visible decay products of the taus, the two leading
jets, and Emiss

T , i.e.,

ptotalT =
∣∣∣plepT + phadT + pj0T + pj1T +Emiss

T

∣∣∣ . (5.2)

Hadron Collider Moments refers to of eight variables, which capture the event
topology [27]. The hadron collider moments are based on the Fox-Wolfram
moments. The hadron collider moments hi with i = 1, . . . 8 are invariant
under rotation around the beam and boosts parallel to the beam.

Transverse momentum of the Higgs boson pHT is defined as the magnitude of
the vector sum of the transverse momentum of all visible decay products of
the taus and Emiss

T

pHT =
∣∣∣plepT + phadT +Emiss

T

∣∣∣ . (5.3)

Scalar sum of transverse momentum
∑
pT is the scalar sum of the transverse

momenta of the visible decay products of the tau and all jets. This variable
gives information about the overall activity of the event and whether the Higgs
boson system is boosted.
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Emiss
T φ centrality measures the centrality of the Emiss

T vector with respect to the
position of the vector of the lepton and the tau in the transverse plane [15]. It
is defined as

Emiss
T φ centrality =

r + s√
r2 + s2

, (5.4)

where

r =
sin(φmiss − φhad)

sin(φlep − φhad)
and s =

sin(φlep − φmiss)

sin(φlep − φhad)
. (5.5)

The centrality takes values between ±
√

2. If Emiss
T is perfectly central between

the lepton and the tau, the centrality takes the value
√

2.

Lepton η centrality measures the centrality in pseudorapidity η of the lepton
with respect to the leading j0 and sub-leading jet j1 [15]. It is defined as

` η centrality = exp

(
− 4

(ηj0 − ηj1)2

(
η` −

ηj0 + ηj1
2

)2
)

(5.6)

and takes the value 1 if the lepton is perfectly central between the two jets.

Collinear approximation is an alternative approach to reconstruct the mass of
the Higgs boson system. It is, however, inferior to the missing mass calculation
in terms of the resolution of the reconstructed mass [26]. The collinear approx-
imation is that the momenta of the neutrino(s) and the visible decay products
of the tau point to the same direction. By considering the missing transverse
momentum Emiss

T , one is able estimate the momentum of the neutrinos. The
variables xcollin0 and xcollin1 quantify the fraction of momentum that is carried
by the visible decay products of the tau compared to the total momentum of
the tau (visible products and invisible products).

5.3 Background and Signal Model

The background and signal model is based on Monte Carlo simulation with the
exception of the fake background estimation which includes data-driven methods.
The analysis uses Monte Carlo from the ATLAS mc15 production. Table 5.2 lists
the samples used in this analysis.

To validate the background model, several control regions (CR) with negligible
signal contribution are defined to check the agreement between the background
estimation and data. The control regions are defined in Sec. 5.7.

Additionally a private Monte Carlo production for the signal in the multivariate
analysis is used. Details about this private production are given in Sec. 6.4.

5.3.1 Z → ττ Background Estimation

The background from Z → ττ events represents one of the most important back-
grounds in the H → ττ analysis. In contrast to the procedure in Run 1, where
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Table 5.2: Summary of the Monte Carlo samples, their generators, and the corresponding
cross sections and branching ratios. The leptons in the diboson decays include leptons from
all generations, i.e., ` = e, µ, τ .

Process Generator σ · BR / pb

ggF H → τlepτhad Powheg + Pythia8 1.262

VBF H → τlepτhad Powheg + Pythia8 0.1079

Z → ee (mee > 40 GeV) Madgraph + Pythia8 2111

Z → µµ (mµµ > 40 GeV) Madgraph + Pythia8 2104

Z → ττ (mττ > 40 GeV) Madgraph + Pythia8 2097

Z → ee (10 GeV < mee < 40 GeV) Madgraph + Pythia8 3399

Z → µµ (10 GeV < mµµ < 40 GeV) Madgraph + Pythia8 3253

Z → ττ (10 GeV < mττ < 40 GeV) Madgraph + Pythia8 3074

VBF Z → ee Sherpa 2.1 2.545

VBF Z → µµ Sherpa 2.1 2.538

VBF Z → ττ Sherpa 2.1 2.541

W → eν Madgraph + Pythia8 20099

W → µν Madgraph + Pythia8 20094

W → τν Madgraph + Pythia8 20081

tt̄ Powheg + Pythia6 832.9

Wt Powheg + Pythia6 71.67

Single top (t-channel) Powheg + Pythia6 70.43

Single top (s-channel) Powheg + Pythia6 3.350

V V → ```` Sherpa 2.1 11.65

V V → ```ν Sherpa 2.1 11.88

V V → ``νν Sherpa 2.1 12.75

WW → `νqq Sherpa 2.1 45.31

WZ → `νqq Sherpa 2.1 10.47

WZ → qq`` Sherpa 2.1 3.117

WZ → qqνν Sherpa 2.1 6.166

ZZ → qq`` Sherpa 2.1 2.146

ZZ → qqνν Sherpa 2.1 4.224
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embedding was used to model Z → ττ events based on Z → µµ events from data,
this analysis relies on Monte Carlo generators.

The Z → ττ background has the same detector signature as the signal process.
The difference, however, is the invariant mass of the di-tau system. The background
from Z → ττ events is expected to peak at around mZ = 91 GeV, whereas the Higgs
boson signal is expected to peak at mH = 125 GeV.

5.3.2 Z → `` Background Estimation

The background originating from Z → `` decays (where ` = e, µ) is taken from
Monte Carlo simulation. The dominant contribution from this background process
enters the analysis, if one lepton from Z → `` is identified as the visible leptonic
decay product of a tau and another object is misidentified as a hadronic tau. In case
of Z → ee, one electron can be misidentified as a τhad.

5.3.3 Top Background Estimation

The top background has only a minor contribution in this analysis. Only approxi-
mately 3% of the events in the final signal regions are due to processes involving top
quarks. The background model for these processes is taken directly from the Monte
Carlo simulation.

This process affects the analysis, since top quarks decay via a W boson, similarly
to the τ decay. The main contribution comes from tt̄→ bW+b̄W− processes, where
one W boson decays to leptons (eνe or µνµ) and the other to quarks. The hadroni-
cally decaying W mimics a τhad. A minor contribution comes from Wt events, due
to its low cross section, see Tab. 5.2. These background processes can be rejected
by vetoing b-tagged events. Since the real W from the top decay manifests itself in
large transverse mass, the rejection of this background can be enhanced by requiring
mT < 70 GeV.

5.3.4 V V Background Estimation

The diboson background processes have only a tiny contribution of about 1% in the
signal regions of this analysis. The background model for this background process is
taken directly from the Monte Carlo simulation. There is no specific control region
for this background, since this process has only a marginal contribution.

5.3.5 Data-Driven Fake Background Estimation

The background events where a jet has been misidentified as a τhad are not taken
from Monte Carlo because the Monte Carlo simulation is not reliable in the context
of τhad misidentification. The data-driven fake factor method is used to model
events where a jet is misidentified as a τhad, commonly referred to as a jet faking
a τ , or simply fake taus. The development, implementation and validation for the
fake factor method does not represent my own work and is not part of this thesis.
However, this method is presented here because it is a vital part of the analysis.

To exclusively use the fake factor method for the fake background, events from
the other background MC samples are removed, if the MC truth information indi-
cates that the reconstructed τhad was not a true τ , but rather a QCD jet. There
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are other possible sources of misidentification, for example, an electron can fake a
τhad. These cases have only a minor contribution in the signal regions and are not
modeled with the fake factor method. Their background estimation is taken directly
from Monte Carlo. Events with a fake τhad come mainly from QCD, Z+jets, W+jets
and tt̄ processes.

For the fake factor method, taus failing the identification criteria are retained
in anti-τ versions of the categories and regions of the analysis. For this, only the
leading τ candidate is considered. All other cuts are left in place for the anti-τ
regions. The fake rates are different for jets initiated by a gluon or by a quark.
To keep the quark-gluon-ratio close to the ratio in the signal regions, a cut-off on
the jet BDT score of 0.35 has been introduced for the events with a tau failing the
identification.

The fake background is modeled by events from data where the tau fails the
identification criteria. For this the data events from the anti-τ regions are added as
fake background to the signal regions weighted by the fake factor f . To remove the
contribution where the tau is not faked by a jet (denoted by j 6→ τ), events from
MC in the anti-τ regions, where the tau is not faked by a jet, are also added to the
signal regions weighted by the negative fake factor −f . The yield NSR

fake of the fake
background in the signal regions (SR) can be summarized by

NSR
fake = (Nanti-τ,SR

data −Nanti-τ,SR
MC,j 6→τ ) · f. (5.7)

The fake factor f itself is calculated separately for each category and binned in
the transverse momentum of the tau candidate phadT and its number of tracks nhadtracks,
i.e., f = f(phadT , nhadtracks). The fake factor is calculated from a sum of process-specific
fake factors fi weighted by the expected relative yield contribution Ri in the anti-τ
regions:

f = RW fW +RZfZ +RTopfTop +RQCDfQCD (5.8)

The relative yields Ri for physics process i are derived in the anti-τ signal region
considering only events where a jet fakes a tau. Specifically, Ri is the ratio of the
Monte Carlo yield of process i over the total yield. The total yield is estimated by
the data yield in the anti-τ region reduced by the Monte Carlo yield in the anti-τ
region where the tau is not faked by jet. Formulaically this reads

Ri =
Nanti-τ,SR
i,MC,j→τ

Nanti-τ,SR
data −Nanti-τ,SR

MC,j 6→τ
. (5.9)

This procedure is used for the physics processes i = W,Z,Top. The contribution
from QCD processes is difficult to infer from MC, therefore the condition

∑
iRi = 1

can be used to determine RQCD. The relative fake yield of QCD processes is defined
as

RQCD = 1−
∑

i 6=QCD

Ri. (5.10)

The individual fake factors fi for physics process i are calculated in the individual
control regions CRi as the yield ratio of data events that fail the tau identification
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over events that pass the identification. The control regions of this analysis are
defined in Sec. 5.7. The contribution from other processes (denoted by “not i”) in
the control regions are estimated by Monte Carlo and subtracted from the data
yields. Similarly the contribution from events where the tau is not faked by a jet is
also estimated by Monte Carlo and subtracted from the data yield. The fake factor
calculation then reads

fi =
NCRi

data −N
CRi
MC,not i −N

CRi
i,MC,j 6→τ

Nanti-τ,CRi
data −Nanti-τ,CRi

MC,not i −N
anti-τ,CRi
i,MC,j 6→τ

. (5.11)

Various closure tests and validation studies have been carried out to confirm this
method. The description of these studies is beyond the scope of this thesis.

5.3.6 Signal Model

The main signal model is built from inclusive vector boson fusion and gluon fusion
Monte Carlo samples. Other signal processes have been investigated, but have been
discarded due to their small contribution. For dedicated multivariate analysis stud-
ies, filtered ggF H → τlepτhad Monte Carlo samples have been produced, which is
discussed in detail in Sec. 6.4. A Higgs boson mass of mH = 125 GeV is assumed
throughout.

5.4 Preselection

The preselection defined in the following is shared among the two analysis variants.
The goal of the preselection is to reject events from various background processes
without exploiting the event topology specific to the Higgs boson production mech-
anism.

The following conditions are imposed on all events.

1. There must be exactly one lepton (electron or muon) in the event, which

(a) satisfies the gradient isolation criteria,

(b) passes the medium identification working point and

(c) exceeds the offline plepT threshold of 25 GeV for electrons and 21 GeV
(25.2 GeV) for muons in 2015 (2016).

The lepton stems from the leptonically decaying tau. The isolation criteria
suppresses background from QCD processes. The requirement of exactly one
lepton rejects Z → `` and diboson background events.

2. There must be at least one τhad in the event. The following conditions are only
imposed on the τhad candidate with the highest transverse momentum. Other
τhad in the event are ignored. The τhad must

(a) be of medium quality with an absolute charge of 1,

(b) be in the pseudorapidity range |ηhad| < 2.4 (excluding the region with
support infrastructure between 1.37 and 1.52) and
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(c) exceed the offline threshold of phadT > 20 GeV.

3. The hadronic and leptonic tau candidates are required to have opposite charge,
which suppresses events where either object is faked and/or originates from a
different source.

4. A b-veto criteria is imposed. This means the event is rejected if there is at
least one b-tagged jet with pjT > 20 GeV and |ηj | < 2.5. The flavor tagging
uses the mv2c10 algorithm with an efficiency working point of 85%. The b-veto
efficiently rejects top background processes.

5. The transverse mass mT must satisfy mT < 70 GeV. This requirement sup-
presses backgrounds from processes with a real W boson decay.

Figure 5.1 shows selected distributions of important kinematic variables after
applying the preselection requirements. The error bands correspond to the combi-
nation of the statistical and systematic uncertainty of the background model. Sys-
tematic uncertainties are discussed in Sec. 7.1. The distributions show mostly good
agreement between the background expectation and the measured data. The distri-
butions for pHT , pj0T , Emiss

T show a slope in the ratio plot. This gives rise to further
studies, to investigate the source of this problem, which are, however, beyond the
scope of this thesis.

5.5 Cut-Based Signal Regions

The two dominant Higgs boson production mechanisms for this analysis are vector
boson fusion and gluon fusion. All events passing the preselection stage are split into
two categories: VBF and Boosted. The category definitions exploit different event
topologies to separate the two production mechanisms. Events from vector boson
fusion usually feature at least two jets with large η separation. Events from gluon
fusion can be enhanced by requiring large transverse momenta of the reconstructed
Higgs boson. This basic strategy is the same for the CBA and the MVA. However,
the exact event category definitions differ slightly for the two analysis methods. For
the cut-based analysis, the two categories are further split into sub-categories to
maximize the sensitivity of the analysis. This section describes the signal regions
for the CBA.

The VBF inclusive category for the CBA consists of all events passing the fol-
lowing requirements.

1. There must be at least two jets in the event.

2. The transverse momentum of the leading jet must satisfy pj0T > 40 GeV.

3. The transverse momentum of the sub-leading jet must satisfy pj1T > 30 GeV.

4. The two leading jets must be separated by ∆ηjj > 3.0 and must be in opposite
hemispheres of the detector, i.e., ηj0 · ηj1 < 0.

5. The invariant mass of the two leading jets mjj must be greater than 300 GeV.
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Figure 5.1: Selected distributions at preselection level. The error bands include statistical
and systematic uncertainties. The top row shows the transverse momentum of the tau phadT

(left) and the lepton plepT (right). The middle row shows the transverse momentum of the

Higgs boson pHT (left) and the leading jet pj0T (right), where entries with pj0T = 0 indicate

that no jet with pj0T ≥ 20 GeV was present in the event. The bottom row shows the mass
mMMC (left) and the missing transverse energy Emiss

T (right). For the bottom left plot, no
data entries are shown in the most signal-sensitive region 100 GeV < mMMC < 150 GeV.
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6. The pseudorapidity of the lepton and the hadronic tau must be between the
pseudorapidity of the leading and the sub-leading jet. This requirement is
referred to as η centrality.

7. The missing transverse energy Emiss
T must be greater than 20 GeV.

8. The pseudorapidity difference ∆ηlep had of the lepton and the hadronically
decaying tau must be less than 1.5.

9. The angular difference in the η-φ plane ∆Rlep had of the lepton and the hadron-
ically decaying tau must not exceed 3.0.

All events that fulfill the VBF inclusive requirements are further split into two sub-
categories VBF tight and VBF loose. Events in the VBF tight category must satisfy
the following requirements.

1. The invariant mass of the two leading jets mjj must exceed 500 GeV.

2. The transverse momentum pHT of the reconstructed Higgs must be greater than
100 GeV.

3. The visible mass mvis must be greater than 40 GeV.

4. The transverse momentum phadT of the hadronic tau must be greater than
30 GeV.

The VBF loose region consists of all events passing the inclusive VBF criteria but
failing the tight selection.

The Boosted inclusive category is defined by the following requirements.

1. The event must satisfy the preselection requirements, but fail the selection
criteria of the inclusive VBF category.

2. The transverse momentum pHT of the reconstructed Higgs must be greater than
100 GeV.

3. The missing transverse energy Emiss
T must be greater than 20 GeV.

4. The transverse momentum phadT of the hadronic tau must be greater than
30 GeV.

5. The pseudorapidity difference ∆ηlep had of the lepton and the hadronically
decaying tau must be less than 1.5.

6. The angular difference ∆Rlep had of the lepton and the hadronically decaying
tau must not exceed 2.5.

The Boosted category is subsequently split into a Boosted high and Boosted low
sub-category depending on the transverse momentum pHT of the Higgs. Boosted
high is defined by the following requirements:

1. The transverse momentum pHT of the Higgs must be greater than 140 GeV.
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Figure 5.2: Selected distributions in the VBF inclusive (left) and Boosted inclusive cate-
gories (right) of the cut-based analysis. The error bands include statistical and systematic
uncertainties. The top row shows the mass mMMC, blinded in the signal-sensitive region.
The middle row shows the missing transverse energy Emiss

T . The bottom row shows the

transverse momentum of the leading jet pj0T for the VBF category (left) and the transverse
momentum of the Higgs boson pHT for the Boosted category (right).
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2. The angle ∆Rlep had between the lepton and the hadronically decaying tau
must be less than 1.5.

All events that pass the Boosted selection criteria, but fail the Boosted high require-
ments, constitute the Boosted low category.

Figure 5.2 shows selected distributions of important kinematic variables in the
VBF and Boosted inclusive regions of the cut-based analysis. The distributions
show good agreement between the background expectation and the measured data.
However, the distribution of pHT shows a slope in the ratio plots. This feature was
already observed at the preselection level.

5.6 Multivariate Signal Regions

Following the idea of the CBA categorization, two similar categories for the mul-
tivariate analysis are defined. The categories are looser1 than the CBA categories
to retain Monte Carlo statistics, which is essential for MVA training. The analysis
follows the definitions from Run 1 [15].

The VBF category for the MVA is defined by all events passing the preselection
and the following requirements:

1. There must be at least two jets in the event.

2. The transverse momentum of the leading jet must satisfy pj0T > 50 GeV.

3. The transverse momentum of the sub-leading jet must satisfy pj1T > 40 GeV.

4. The two leading jets must be separated by ∆ηjj > 3.0.

5. The visible mass mvis must be greater than 40 GeV.

The Boosted category consists of all events passing the preselection and failing
the VBF requirements that also satisfy that

1. the transverse momentum pHT of the Higgs boson must be greater than 100 GeV.

The two MVA categories are not split any further, in contrast to the sub-cat-
egorization for the CBA. Introducing sub-categories in the multivariate analysis
would lead to regions with less statistics, which would have negative effects on the
performance of a classifier. The idea behind the MVA is, that the classifier learns
how to combine kinematic variables to enhance the separation between background
and signal.

Figure 5.3 shows selected distributions of important kinematic variables in the
VBF and Boosted regions of the multivariate analysis. The distributions show good
agreement between the background expectation and the measured data. However,
the distribution of pHT shows a slope in the ratio plots, which was already observed
at preselection level and in the cut-based analysis.

The event selection for the cut-based analysis and multivariate analysis is sum-
marized in Tab. 5.3.

1With the exception of the pjT of the leading jet and sub-leading jet. In the cut-based analysis the
threshold is 40 GeV (30 GeV) whereas the threshold in the multivariate analysis is 50 GeV (40 GeV)
for the leading (sub-leading) jet.
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Figure 5.3: Selected distributions in the VBF (left) and Boosted categories (right) of the
multivariate analysis. The error bands include statistical and systematic uncertainties. The
top row shows the mass mMMC, blinded in the signal-sensitive region. The middle row shows
the missing transverse energy Emiss

T . The bottom row shows the transverse momentum of

the leading jet pj0T for the VBF category (left) and the transverse momentum of the Higgs
boson pHT for the Boosted category (right).
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Table 5.3: Summary of the event selection of the cut-based analysis and the multivariate
analysis. The preselection criteria are shared between cut-based analysis and multivariate
analysis.

Preselection

• lepton: nlep = 1, gradient isolation, medium id.

peT > 25 GeV or pµT > 21 GeV (25.2 GeV) in 2015 (2016)

• τhad: nhad ≥ 1, medium id., |q| = 1, |ηhad| < 2.4, phadT > 20 GeV

• qhad · qlep < 0

• b-veto

• mT < 70 GeV

CBA

VBF inclusive Boosted (Bst.) inclusive

• pass preselection • pass preselection

• pj0T > 40 GeV • fail VBF incl.

• pj1T > 30 GeV • pHT > 100 GeV

• ∆ηjj > 3.0 • Emiss
T > 20 GeV

• ηj0 · ηj1 < 0 • phadT > 30 GeV

• mjj > 300 GeV • ∆ηlep had < 1.5

• η centrality • ∆Rlep had < 2.5

• Emiss
T > 20 GeV

• ∆ηlep had < 1.5

• ∆Rlep had < 3.0

VBF tight VBF loose Boosted high Boosted low

• pass VBF incl. • pass VBF incl. • pass Bst. incl. • pass Bst. incl.

• mjj > 500 GeV • fail VBF tight • pHT > 140 GeV • fail Bst. high

• pHT > 100 GeV • ∆Rlep had < 1.5

• mvis > 40 GeV

• phadT > 30 GeV

MVA

VBF Boosted

• pass preselection • pass preselection

• pj0T > 50 GeV • fail VBF

• pj1T > 40 GeV • pHT > 100 GeV

• ∆ηjj > 3.0

• mvis > 40 GeV
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Table 5.4: Definition of the control regions. The control regions are enriched in the
processes listed in the third column. The fourth column shows the approximate purity at
the preselection level.

Region Definition Enriched in Purity

Top CR invert b-veto and invert mT cut top 59%

W CR invert mT cut fake 91%

Z CR require di-lepton system (see Sec. 5.7) fake 96%

QCD CR invert lepton isolation criteria fake 95%

5.7 Control Regions

In order to validate the background model, various control regions with negligible
signal contribution have been defined. The control regions are intended to be en-
riched with one background process in order to verify the modeling of this physics
process. To prevent a bias in the control regions, the regions are chosen to be close
to the signal region. The control regions are defined by inverting (in most cases)
only one cut, which was introduced in the standard event selection to reject that
type of background process. Table 5.4 lists the definitions of all the control regions
used in the MVA and CBA analysis.

The control region for top background is defined by requiring a b-tagged jet and
large transverse mass mT > 70 GeV. The top control region has a purity of roughly
59%. Studies have been performed to increase the purity by using different values
for the mT cut. The overall performance of the analysis, however, did not increase,
so the purity optimization has not been used for this thesis in favor of a control
region closer to the signal region.

Figure 5.4 shows distributions in the top control region. The top control region
plays a crucial role in the analysis, since it is used in the likelihood fit to estimate
the top normalization. The background model shows good agreement with data in
the top control region.

The top region used to derive the fake factors is slightly different from the defi-
nition of the top control region above. In contrast to the definition in Tab. 5.4, the
cut on the transverse mass has been changed to mT > 40 GeV.

The W control region is enriched in W → `ν` (` = e, µ, τ) decays. It is defined by
inverting the mT cut to mT > 70 GeV. The main contribution of W to the analysis
comes from events where the W decays to light leptons (e, µ) and a jet fakes a τhad.
The content of the W control region is dominated by fakes, since events with a jet
faking a τhad is modeled with the fake factor method, see Sec. 5.3.5. Figure A.1
shows selected distributions in the W control region. The discrepancy between data
and Monte Carlo in the W control region at preselection level, gives rise to further
studies, which are beyond the scope of this thesis. This discrepancy, however, does
not impact the analysis, since it seems to be not significant in the VBF and Boosted
categories for the CBA and the MVA given the uncertainties of the background and
the data.

The Z control region is enriched in Z → `` decays (where ` = e, µ). It is defined
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Figure 5.4: Selected distributions in the top control region. The error bands include
statistical and systematic uncertainties. All plots show the mass mMMC, except the top right
plot which shows mT. The top row shows the distributions after applying the preselection
cut. The middle row shows the distributions for the VBF categories of the CBA (left) and
MVA (right). The bottom row shows the distributions for the Boosted category of the CBA
(left) and the MVA (right).
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by requesting two same-flavor leptons of opposite charge. The invariant mass of the
di-lepton system must be within the Z boson mass window between 61 GeV and
121 GeV. The conditions on the hadronic τ are not modified. The Z CR consists
mostly of events modeled with the fake factor method. The reason for this is the
requirement of two light leptons and a tau. The two light leptons typically come
from Z decays, whereas the τhad originates from a jet, which is misidentified as a
τhad. There are other scenarios, where an event can end up in this control region.
It is, for example, possible to have a true τhad and a jet faking an electron, but
the above example is the most dominant contribution. Figure A.2 shows selected
distributions in the Z control region. The background model shows good agreement
with data in this control region.

The QCD control region is defined by inverting the lepton isolation criteria. This
control region consists mostly of events where a QCD jet fakes a tau. Figure A.3
shows selected distributions in the QCD control region. The background model
shows good agreement with data in this control region.



CHAPTER 6

Optimization of the Multivariate Analysis

This chapter comprises the main studies that have been performed during the course
of this thesis. All the studies shown here are carried out separately for the VBF
and Boosted categories unless otherwise noted. The first section introduces the
main techniques and concepts of machine learning, which are used to optimize the
parameters of boosted decision trees. Section 6.2 shows how the performance of a
boosted decision tree is assessed in this thesis. The input variables of the boosted
decision tree are chosen in Sec. 6.3. Section 6.4 discusses the issue of a lack of
training statistics, which is addressed by a special filtered Monte Carlo production.
Section 6.5 revisits the concept of k-fold cross validation introduced in Sec. 6.1 and
studies its role in the analysis. The boosted decision tree training parameters are
optimized in Sec. 6.6. The chapter closes with the validation of the selected BDTs
in Sec. 6.7.

6.1 Introduction to Machine Learning

The multivariate analysis uses geometrically complex structures in the multi-dimen-
sional phase space to separate signal and background events. Since it is difficult to
observe or define these structures by hand, one usually employs machine learning
techniques. Problems in machine learning or pattern recognition can be grouped
into three classes: reenforcement learning, unsupervised learning, and supervised
learning [28]. Reenforcement learning deals with problems where an algorithm has
to find appropriate actions in a virtual environment to achieve a certain goal. In
unsupervised, learning an algorithm is presented with a collection of observations
and the algorithm has to group the observations based on their features. The third
method, supervised learning, is best suited for the multivariate analysis at hand.
In supervised learning in the context of particle physics, the algorithm is presented
with Monte Carlo events of background and signal [19]. The algorithm learns what
signal and background events look like. Since the algorithms in this context try to
assign the class labels signal s and background b to unknown events, these types of
algorithms are called classifiers. A classifier can be used on measured data, for which
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Figure 6.1: Structure of a decision tree (left) and the assignment of this decision tree in
phase space (right). The nodes in the structure are represented by boxes. The terminal
nodes are represented by colored boxes, the color depends on the class association. For
simplicity the phase space is spanned by the two variables x, y ∈ [0, 1]. The split in phase
space introduced by the first node is indicated by a dashed line, the splits introduced by the
second layer of nodes is indicated by dotted lines.

the class association is unknown, to determine whether the event is more signal-like
or background-like.

The field of machine learning hosts many different methods and algorithms to
classify objects [28, 29]. Boosted decision trees have become popular especially in
particle physics. This thesis will focus on the usage of a boosted decision tree. Its
concept is described in Sec. 6.1.2.

6.1.1 Decision Trees

A decision tree is a classifier that splits the feature space, or the phase space in high
energy physics, into rectangular regions1. The tree consists of nodes. Each node is
annotated by a condition on a kinematic variable, similar to a cut in the cut-based
analysis. Each internal node of the tree has two daughter nodes. The events that
satisfy the node’s condition are forwarded to the “pass” daughter node. The events
that do not satisfy the condition are forwarded to the “fail” daughter node. The
procedure is repeated until the event reaches a terminal node called leaf node. The
structure of a decision tree is illustrated in Fig. 6.1. Each node splits the phase
space in rectangular regions. The two sub-trees mounted to a given node act on two
disjunct regions in phase space. The leaf nodes are annotated by the class labels
signal (s) or background (b). If an event is passed along the tree and reaches a signal
leaf node, the classifier considers the event as signal-like.

The operation of a decision tree can be illustrated by representing the phase
space as a two dimensional surface. Then the whole area of the phase space would
be covered with rectangles or unions of rectangles. Each point in phase space is
labeled as either signal (s) or background (b). The phase space of a simple decision
tree is sketched in Fig. 6.1.

1The consideration here is limited to binary decision trees.
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The advantage of a decision tree is the simplicity of this classifier. The inter-
pretation is directly apparent from the structure of the tree. A single path from
the root node of the tree to a signal leaf node corresponds to a cut based analy-
sis. Since a decision tree has many branches, it is more powerful than a cut-based
analysis. The disadvantages come with the generation process of a decision tree.
It is computationally difficult to optimize all cuts in the tree at the same time to
minimize the misclassification error. Usually a simpler, greedy algorithm is used to
construct a decision tree. The tree is built top down, i.e., starting from the root
node. At each node all input variables and all cut positions are scanned to see which
cut maximizes the separation between signal and background in the daughter nodes.
There are several methods to quantify the separation gain achieved by a single cut
[29]. Throughout this thesis the decision trees are built by minimizing the gini index
[30], which is defined as p · (1 − p), where p is the signal purity of the node. The
background purity is then given by (1 − p). A node which enhances background
in one of its sub-nodes is as valuable as one which enhances signal. The gini index
therefore has the advantage, that it is symmetric and does not prefer enhancing
signal over enhancing background.

There are different methods to limit the size of the trees. One method is to
impose a maximal depth of the trees, which means that all nodes at the specified
depth are considered terminal nodes and do not feature any daughter nodes. Another
method is to stop building a branch in the tree if only a fraction of the initial events
is affected by the branch. This criteria is referred to as minimal node size.

Trees built with the algorithm outlined above are in general not optimal. The
major disadvantage of decision trees using such a greedy algorithm is that the trees
are unstable. Slight changes in the input dataset lead to completely different tree
structures, since the differences propagate through the tree [29].

6.1.2 Boosting and Boosted Decision Trees

Boosting is one of the most powerful learning algorithms. The concept of Boosting is
a procedure to combine other classifiers into a more powerful committee [29]. Boost-
ing is neither limited to decision trees nor to classification problems, the discussion
in this section, however, is limited to decision tree based classifiers. The idea of
Boosting is to iteratively repeat the training of a single decision tree and increase
the event weights for events which have been misclassified in the previous round.
This way the construction of a single decision tree is forced to focus on events that
are difficult to classify. The final decision of the boosted decision tree (BDT) is taken
from a weighted average of the individual decision trees. The collection of decision
trees is referred to as a committee.

Some notation has to be introduced to study the procedure of boosting in more
detail. The set used to train the boosted decision tree consists of N events with
event weights wn. The n-th event is characterized by a vector xn comprised of
all kinematic variables of the event. The class labels for the training events are
tn ∈ {−1,+1}, where tn = −1 (+1) means that the n-th event is a background
(signal) event. The committee consists of M decision trees. The prediction of the
m-th decision tree in the committee when used on event n is dm(xn) ∈ {−1,+1}.
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The weighted average of the committee when used on event n is defined as

f(xn) =

M∑
m=1

αmdm(xn). (6.1)

The value of the function f(xn) is the prediction of the boosted decision tree. The
prediction of the BDT is called output score and due to the weighted sum, can take
any values in the interval [−1, 1]. One approach [31] to understand boosting is to
start with a loss function, for example the exponential loss function

L(tn, f(xn)) = e−tnf(xn), (6.2)

which quantifies the penalty of a false prediction f(xn) 6= tn or the reward (small
values of L) in case of correct prediction f(xn) = tn. It is useful to define the
classification error εm of the decision tree dm as

εm =

∑N
n=1wn I(tn 6= dm(xn))∑N

n=1wn
(6.3)

where I(cond.) ∈ {0, 1} is an indicator function with I = 1 if and only if the condition
is true. The committee is trained iteratively while minimizing the sum of losses

E =
N∑
n=1

L(tn, f(xn)). (6.4)

Since the weights of the events are updated iteratively, the weight of event n, when

it is used with decision tree dm, is w
(m)
n . Assume the committee already consists of

m−1 fixed classifiers d1, . . . dm−1 with weights α1, . . . , αm−1. Adding a new decision
tree dm to the committee requires a new minimization of the sum of losses E. Since
all preexisting classifiers are fixed, dm and αm are the only variable terms of the
loss function. It can be shown [28] that this minimization of E with L as defined in
Eq. (6.2) translates to the following three statements. Firstly, the minimization of
E implies, that the weights of events, which were falsely classified by the previous
tree dm−1 (i.e. tn 6= dm−1(xn)), should be updated according to

w(m−1)
n → w(m)

n = w(m−1)
n · eαm−1 . (6.5)

Secondly, it implies that the classification error εm should be minimized. This is the
usual condition for the training of a classifier. Lastly, the minimization of E implies
that the weight αm of dm in the committee is determined by

αm = log

(
1− εm
εm

)
. (6.6)

The usage of the exponential loss function in Eq. (6.2) leads to the simple Equa-
tions (6.5, 6.6) which are commonly known as AdaBoosting. Using different loss
functions leads to different boosting properties. Depending on the loss function,
the minimization of E does not necessarily lead to simple analytic functions for the
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adjustment of the event and decision tree weights αm and w
(m)
n . In some cases nu-

merical methods need to be applied [29]. An alternative boosting method is gradient
boosting. The loss function of gradient boosting [30] is

L(tn, f(xn)) = log
(

1 + e−2tnf(xn)
)
. (6.7)

When the loss function of AdaBoosting is compared to the loss function of gradient
boosting, it becomes apparent, that AdaBoosting has a larger penalty term for
outliers compared to gradient boosting. AdaBoosting is therefore less robust to
outliers [28]. All boosted decision trees in this thesis employ gradient boosting. The
software package TMVA [30] is used throughout this thesis to train the boosted
decision trees.

The classification power of the committee is increased by each decision tree that
is added, because each new tree tries to correct the mistakes of the committee. The
stability and robustness of the boosted decision tree can be increased by artificially
slowing down the learning process of the committee. Let the committee consisting
of m decision trees be denoted by fm. A new parameter, the shrinkage ν ∈ (0, 1],
is introduced to slow down the learning process. When decision tree dm is added to
the committee fm−1, the new committee is formed according to

fm(xn) = fm−1(xn) + ναmdm(xn). (6.8)

6.1.3 Overtraining

When a boosted decision tree is trained, it tries to fit its prediction to the class labels
in the training set. The boosted decision tree adapts to smaller and smaller features
in the training observations with increasing complexity of the boosted decision tree,
for example with increasing number of trees, increasing shrinkage values, or larger
individual decision trees. At some point the features that the BDT is picking up are
merely random fluctuations due to the limited amount of the training observations.
The boosted decision tree will become perfectly adapted to the training observations
with increasing BDT complexity.

If this trend extends to cases where the BDT is not able to correctly classify
new observations, which are not part of the training observations, one speaks of an
overtrained BDT. The BDT in such a case is not able to generalize the features,
which it learned based on the training observations, to new observations.

To illustrate this, imagine a student preparing for an exam. The student learns
the material covered in the lecture and uses old exams from the past years. The ideal
case would be that the student learns the concepts of the material and is able to
show this by solving similar exercises in the final exam. A student which corresponds
to an overtrained BDT, would simply learn the answers of the previous exams by
heart. This student is much more adapted to the training input and is able to solve
previous exams without any mistake, but this will not help in the actual exam.

The goal of a successful boosted decision tree parameter optimization is therefore
to find boosted decision tree parameters suited for the training observations at hand,
such that the boosted decision tree performs best on new unseen observations.
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Table 6.1: Setup of the parameter scan to illustrate the difference between training and
test set.

Parameter Value(s)

Input Variables full set (47 variables)

Category regular VBF

Background (training) all

Background (test) all

Signal (training) VBF only

Signal (test) VBF and ggF

Number of Trees 1, 2, 3, 6, 10, 20, 30, 60, 100, 200, 300, 600, 1000

Max Depth 10

Min Node Size 1 %

6.1.4 Boosted Decision Tree Parameter Scans

As discussed in the previous section, boosted decision trees tend to overtraining. It
is therefore beneficial, to introduce two disjoint (statistically independent) sets of
Monte Carlo events. One set is used to train the BDTs (hence training set) and
the other set can be used to evaluate the performance (commonly named test set).
By doing this, an overtrained BDT will (by the definition of overtraining) perform
badly on the unseen MC set used for evaluation.

In this thesis the technical procedure of splitting the Monte Carlo events into
two sets is performed based on the event number. One way to split the events is to
define one Monte Carlo set that contains only events with an even event number,
whereas the other set contains only events with odd event numbers.

As discussed in Sec. 6.1.2, boosted decision trees have several parameters to tune
and control their training. The purpose of a parameter scan is to determine the best
values of these parameters, such that the boosted decision tree is not overtrained
but still as powerful as possible. In this context the best values are defined by max-
imizing the BDT performance on the test set according to some figure of merit. In
this thesis the figure of merit of BDT performance has been chosen to be the signif-
icance determined by a likelihood fit with a limited set of systematic uncertainties
as described in Sec. 6.2.

An easy way to perform a parameter scan is to choose a collection of different
parameter configurations and train one boosted decision tree for each configuration.
The BDTs can then be assessed by calculating the desired figure of merit. In this
thesis a grid of parameter configurations is used in the parameter scans.

A BDT, selected based on its performance on the test set, can be assumed to be
safe from overtraining. The principle, that the optimization (here the training) and
the assessment of its outcome is done on two different Monte Carlo sets, is generally
applicable, and will be re-encountered for other optimizations in this thesis as shown
Sec. 6.1.5.

The purpose of the first study presented here, is to show a parameter scan and
to illustrate the phenomena of overtraining at the same time. To perform this study
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Figure 6.2: Comparison of the BDT performance when used on the training set and when
used on an independent test set as a function of the number of trees in the BDT.

a parameter scan has been carried out. For this, only the parameter number of
trees is varied. All other parameters are kept constant. Since a dedicated study
to optimize the BDT input variables has not yet been described, this study uses
all variables listed in Sec. 6.3. As stated in [30], boosted decision trees are robust
against additional input variables. The setup of the parameter scan is summarized
in Tab. 6.1. This study consists of a comparison of BDTs used on their training
and test set. BDTs with different complexities are used, to see the dependence on
the complexity of the classifier. The single parameter number of trees is chosen to
represent and control the complexity of BDTs. A large number of trees leads to
more boosting iterations and therefore a more complex BDT, which is more likely
to experience overtraining.

The result of this study is illustrated in Fig. 6.2. The figure shows the expected
behavior on the training and test set. For low BDT complexity the difference in
performance between training and test set is small. Both increase until a certain
complexity is reached. Beyond this point the BDT performance on the training set
still increases, as the increasing complexity of the boosted decision tree adapts to
small features in the training set. When this happens the boosted decision tree is
overtrained and its performance decreases on the independent test set, since this
does not feature the same fluctuations as the training set.

It should be noted that all points in the plot are subject to statistical fluctuations.
This can be seen for ten trees, where the BDT used on the test set outperforms the
same BDT on the training set. The points would scatter around a mean value,
when the experiment was repeated on different training and test sets. Since the
BDT training and the fit are both complicated and non-intuitive procedures and
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since multiple training and test sets are not available, it is difficult to estimate an
uncertainty for the points.

6.1.5 Training, Validation and Test Sets

The procedure to test different configurations and select the best BDT based on
its performance on the test set as outlined in Sec. 6.1.4, is only reliable when the
number of parameter configurations is small. In the course of this thesis of the order
of 105 boosted decision trees are trained. As the number of parameter configurations
increases the parameter scan itself becomes an extensive optimization which can
feature its own overtraining behavior.

A boosted decision tree, which is selected because it is the best BDT in a param-
eter scan, can bias the analysis. The selected BDT might be able to separate the
background and signal particularly well by chance, only when used on this particular
test set. In fact, it should not be surprising that such a bias can be introduced, by
selecting the best boosted decision tree on the Monte Carlo set, on which it will be
used in the analysis. If the selected BDT exhibits such a bias, the boosted decision
tree will perform better on Monte Carlo compared to data and therefore will lead
to discrepancies in the output distributions of the boosted decision tree.

The usual approach in the machine learning community to mitigate this problem
is to introduce a third disjoint (statistically independent) Monte Carlo set. Since
the Monte Carlo statistics is limited and a new third set can not be added easily,
this three-fold instead of two-fold splitting has to be done before any training or
grid scanning is performed. The three sets are used as follows:

• The training set has the same function as in the previous section to train all
BDTs in the parameter scan.

• The second set is commonly named validation set. This set takes the role
of the test set in the approach from the previous section. That is, all the
trained BDTs are used on this set to assess their performance. Based on this
evaluation, the best performing BDT is selected.

• Once a boosted decision tree has been chosen, the test set can be used (not
to be confused with the test set in the previous section). All the events in the
test set are then classified with the selected boosted decision tree. The same
classification is carried out with measured data. The resulting distributions
can be used in the final fit of the analysis.

By introducing two separate sets for the parameter optimization and the final
fit, the potential bias towards better performances on the optimization set can not
affect the agreement of data and Monte Carlo in the analysis. Neither the Monte
Carlo events in test set nor the data events have been used to train or optimize the
BDT. In a way, this procedure is similar to blinding of interesting parts of data until
the analysis is fixed. The difference, however, is that here parts of the Monte Carlo
(the test set) and not data is blinded until the analysis is fixed.

The scheme proposed in this section overcomes the issue of a bias introduced
by the parameter scan itself. However, the scheme introduces a new complication.
In general the training statistics is crucial in multivariate analyses. By splitting
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the Monte Carlo set into three disjoint, equally large sets, the training statistics is
reduced by 33% compared to the simple approach of only two sets. The situation
can be improved by employing k-fold cross validation.

6.1.6 k-fold Cross Validation

In Run 1 the Monte Carlo events were split into two sets of MC events, based on
the oddness of the event number. A boosted decision tree was trained on the even
Monte Carlo set and was then used on the odd event set. Another BDT was trained
on the odd set and used on the even set. By doing this the BDTs could be trained
on 50% of all MC events. In the analysis, however, 100% of all Monte Carlo events
can be used. Each event is classified by the BDT which was not using this event
during training. This procedure can be referred to as 2-fold cross validation, because
it involves two independently trained BDTs. In the following analysis this method
is generalized to k-fold cross validation with arbitrary k and modified to incorporate
the principle of disjoint training, validation and test sets.

To use k-fold cross validation, the MC events are split into k disjoint and sta-
tistically independent sets s = 0, . . . , (k − 1). Similarly to the previous technical
procedure, for this thesis the splitting is done based on the event number n. The
index i of the set to which an event with event number n belongs is determined by

i = n mod k. (6.9)

No correlation between event number and any kinematic variable could be found.
The Monte Carlo sets have been checked to be equivalent given their statistical
uncertainty.2

For each parameter configuration in a parameter scan k boosted decision trees
are trained. The total number of boosted decision trees to train in a parameter
scan is therefore multiplied by k. Given a parameter configuration, all k BDTs
are trained on different combinations of MC sets. BDTi uses all Monte Carlo sets
except set s = i and s = (i + 1) mod k. Consider for example k = 10. For each
parameter configuration ten BDTs are trained. The first one, with index i = 0, uses
the sets s = 2, . . . , 9 for its training. This means 80% of the Monte Carlo statistics
are available during training. The Monte Carlo sets s = 0 and s = 1 have not been
seen by BDTi=0. The association between Monte Carlo sets and boosted decision
trees is illustrated in Fig. 6.3.

One of the two remaining Monte Carlo sets can be used to evaluate the boosted
decision tree and therefore function as validation set, whereas the last remaining set
takes the role of the test set and is used to produce the final BDT score distributions
for the analysis. While using the boosted decision trees on the validation sets or test
sets, the k boosted decision trees can be thought of as a single compound classifier.
The combined classifier is used on the full Monte Carlo set. The event number of
each event will decide which internal boosted decision tree is used to classify the
event. This is the same as adding the k BDT score distributions. In the following

2From a physical perspective such a correlation seems impossible. However, during the prepa-
ration of the Monte Carlo samples, it can not be excluded that the event number has already been
used and that events are treated differently based on the event number. The ideal case would be to
perform the splitting using a variable from a independent random generator. This is however not
possible in an easy way while maintaining reproducibility and cross framework compatibility.
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Figure 6.3: Illustration of the association between Monte Carlo set and boosted decision
tree in k-fold cross validation.

the term boosted decision tree is also used to refer to this compound classifier. It is
apparent from the context when a single boosted decision tree inside the compound
boosted decision tree is meant.

6.2 Assessment of Boosted Decision Trees

The sensitivity of an analysis can depend to a large extent on systematic uncertain-
ties. Selecting the most promising boosted decision tree based on a figure-of-merit
which takes only statistical uncertainties into account, does not guarantee that the
performance of the BDT is also good once systematic uncertainties are introduced.

To get a more reliable estimation of the BDT performance during the parameter
optimization, a likelihood fit of the boosted decision tree output score distribution
is performed. Only a limited set of systematic uncertainties is considered in this fit,
since calculating the BDT score distributions for systematic variations is a (CPU)
time consuming process. The list of systematic uncertainties has been created by
considering the ranking of systematic variations by their impact on the coupling
strength in the cut-based analysis. Additionally, systematic variations, that are
expected to be important from a physics point-of-view, are also included. The
variations included in the fit are listed in Tab. 6.2. Descriptions of the systematic
uncertainties and more information about the fit procedure can be found in Chap. 7.

This reduced version of the fit does not use any control regions to constrain the
background processes. The parameter optimization is carried out separately for the
two categories VBF and Boosted. The fit to assess the boosted decision tree during
the optimization is therefore also performed independently for the two categories.

6.3 Input Variables

The selection of input variables of the boosted decision tree is an important step
in the optimization of a BDT-based multivariate analysis. Unlike other machine
learning algorithms such as (deep) neutral networks, a boosted decision tree is not
able to learn how to derive new variables [28, 29]. It is therefore beneficial to
preprocess the input variables and combine them to derive variables which capture
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Table 6.2: List of systematic variations used in the fit to assess the boosted decision tree
performance. The second column indicates, whether the systematic variation consists of a
up and down variation.

Name of the Systematic Variation Type

btag light 0 up/down

JER

JES EffectiveNP 1 up/down

JES EffectiveNP 2 up/down

JES EffectiveNP 3 up/down

MET SoftTrk ResoPara

MET SoftTrk ResoPerp

PU PRW up/down

TAU EFF ELEOLR TRUEELECTRON up/down

TAU TES INSITU up/down

the event topologies. The definition of derived quantities has been guided by the
results from Run 1 [15]. Additionally, other variables such as the hadron collider
moments have been added [27]. The derived quantities have been introduced in
Sec. 5.2. The following list summarizes all the variables that have been considered
as input variables of the BDT.

• Hadron collider moments: h1, . . . , h8.

• Jet(s): ηji , φji , pjiT for i = 0, 1, ηj0 · ηj1 , ∆ηjj ,
∑
pjT,m

jj

• Di-tau and Higgs boson system: xcollin0,1 , ∆ηlep had, ∆φlep had, ∆plep had
T , ∆Rlep had,

mMMC, mT, pHT , plepT /phadT ,
∑
pT, ptotalT , mvis

• Lepton: ηlep, φlep, plepT , ` η centrality and the tight lepton identification criteria

• Missing transverse energy: Emiss
T , Emiss

T φ centrality and φ of Emiss
T ,

• Number of electrons, muons and jets

• Tau: ηhad, φhad, phadT

As discussed in Sec. 6.1.1, each node in the trees is constructed by examining
the full variable list and choosing the variable and cut position which maximizes the
separation gain. It is therefore possible to train boosted decision trees and inspect
their structure to see which variables are important.

6.3.1 Variable Selection

The study presented in Sec. 6.1.4 used the full variable set shown in Sec. 6.3. Al-
though BDTs are robust and ignore variables which do not provide additional in-
formation, it is, however, advisable to limit the input variables to a minimal set to
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Table 6.3: Setup of the parameter scan to determine the optimal set of input variables.
The same setup is used for VBF and Boosted.

Parameter Value(s)

Cross Validation Sets k 10

Input Variables full set (47 variables)

Training Region regular VBF / Boosted region

Background (training) all

Background (validation) all

Signal (training) VBF / ggF for VBF / Boosted

Signal (validation) VBF / ggF for VBF / Boosted

Number of Trees 10, 20, 50, 100, 200, 400, 800, 1000

Max Depth 10

Shrinkage 0.03, 0.1, 0.3, 0.8

Min Node Size 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 %

reduce computation time and to limit the effort it takes to validate the input mod-
eling, since this includes the correlations between the input variables (i.e. O(n2)
correlation pairs).

A sensible set of input variables is determined with the use of a BDT parameter
scan as outlined in Tab. 6.3. BDTs with various parameter configurations are trained
and assessed with a fit on the validation set as has been described in Sec. 6.2. The
software library TMVA offers a measure to assess the importance of an input variable
for a given BDT. As defined in [30], the importance of an input variables is derived
from the sum of squared separation gain that the variable achieves at a node in the
BDT weighted by the number of events that are affected by the node. Separation
gain is quantified by the gini index [30]. A global variable rankings are derived from
the parameter scan by averaging the importance values for each variable over all
BDTs. The parameter scan is performed separately for VBF and Boosted, as it
is assumed that different sets of input variables provide an optimal input set for
the two categories due to the different event topology. The resulting full variable
ranking is listed in Tables B.1 and B.2.

The top ranked variables are similar to the input variable set used in Run 1
[15]. The variable usage in Run 1 is listed in Tab. 6.4. Several variables in the
top of the ranking are strongly correlated to other highly ranked variables, such
as ∆Rlep had, ∆ηlep had and ∆φlep had. It is assumed that the effect on the BDT
performance is only marginal, if these variables are collapsed into a single variable.
If this procedure is repeated, the top of the ranking consists almost exclusively of
the variable set used in Run 1, which has been optimized as described in Ref. [15].
Since the variable ranking indicates a similar choice, the analysis presented in this
thesis uses the variable set from Run 1.
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Table 6.4: Input variable set used in Run 1 and in this thesis. The dots indicate the usage
of variable in a category.

Variable VBF Boosted

mMMC • •
∆Rlephad • •
mT • •
Emiss

T φ centrality • •
mjj •
∆ηjj •
` η centrality •
ηj0 · ηj1 •
ptotalT •
plepT /phadT •∑
pT •

6.3.2 Modeling of Input Variables

Figures 6.4 and 6.5 show the distributions of input variables in the VBF and Boosted
categories, respectively. The distributions show good agreement between data and
the background estimation. Since a boosted decision tree is capable of exploiting
correlations between the input variables, the agreement of the correlations between
data and Monte Carlo have also been checked. No significant discrepancy could be
found. This set of input variables can therefore be used to train the boosted decision
tree used for this multivariate analysis.

Figures 6.6 and 6.7 show the linear correlation coefficients between the input
variables for the VBF and Boosted categories respectively. The boosted decision
trees can utilize differences in the correlations between signal and background to
achieve a higher separation between signal background compared to the cut-based
analysis.

6.4 Generator Filter and Training Statistics

An essential ingredient for successful machine learning is to have a large set of
training observations. In this analysis this means to have a large set of Monte Carlo
events, which can be used to train the boosted decision trees. From earlier studies
it is known that the statistics of the signal processes is a limiting factor. There are
various techniques to mitigate this problem.

The most obvious method is to enhance the training statistics by generating
more Monte Carlo events. Since this is a (computationally) time consuming task,
the event generation should be tailored to this analysis. This can be done by applying
selections at an early stage of the generation process. This allows to reject events, if
they will not be selected in the analysis, and thus this saves the computation time
of all subsequent steps for these events. This early selection is generally referred to
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Figure 6.4: Selected input variables of the VBF boosted decision tree. The top row shows
` η centrality (left) and Emiss

T φ centrality (right). The middle row shows mMMC with blinded
data in the signal-sensitive region 100 GeV < mMMC < 150 GeV (left) and the invariant
mass of the jets mjj (right). The bottom row shows ∆ηjj (left) and ptotalT (right).
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Figure 6.5: All input variables of the Boosted boosted decision tree. The top row shows
∆Rlep had (left) and mMMC with blinded data in the signal-sensitive region 100 GeV <
mMMC < 150 GeV (right). The middle row shows the transverse mass mT (left) and the

ratio of the transverse momenta of the tau and the lepton plepT /phadT (right). The bottom row
shows the scalar sum of the transverse momenta

∑
pT (left) and Emiss

T φ centrality (right).
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Figure 6.6: Visualization of linear correlations coefficients between the input variables in
the VBF category for the signal class (top) and the background class (bottom).
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as a Generator Filter and will be described in more detail in this section. Since the
filtered Monte Carlo samples are produced privately and have not been approved,
the filtered Monte Carlo events will only be used as training input. The events from
the filtered Monte Carlo production are removed when the Monte Carlo set is used
as a validation or test set.

The outline of the individual steps and stages required for Monte Carlo event
generation has been described in Sec. 4.4. Section 6.4.1 describes the generator filter
developed for this application and Sec. 6.4.2 compares the filtered signal sample to
the officially produced inclusive signal samples. Finally, Section. 6.4.3 studies the
effect of an increase in training statistics

6.4.1 Development of a Generator Filter

A generator filter is implemented at the step of event generation. After the sim-
ulation of the initial hard scattering process, the generator filter decides whether
the subsequent detector response should be simulated. If an event is discarded, be-
cause it will not pass the event selection of the analysis, the detector simulation and
reconstruction do not have to be carried out.

The filter developed for this thesis is built upon the configuration of the official
sample production. However, in contrast the official samples, ATLFAST-II is used
to simulate the detector response. The official samples are filtered by selecting the
final state τlepτhad of each H → ττ decay. The filter selections described in the
following are added to this already existing configuration.

The goal of this generator filter is to enhance the Boosted signal region with gluon
fusion signal samples. The Boosted category has the signature of high transverse
momentum of the Higgs boson, which can be used to identify event candidates at
an early stage. A generator filter which enhances this signal statistics in the VBF
category is also desirable and attainable, but has not been investigated in the course
of this thesis.

A complication arises because an event filter at generator level only has access
to the truth information of the particles. In the analysis, however, the event selec-
tion is based on reconstructed quantities. Optimally the truth information and the
reconstructed information is identical. The reconstructed quantities differ from the
truth information, due to detector effects, especially energy resolution and energy
scale, but also due to misidentification. To distinguish the truth quantities from the
reconstructed quantities, the symbol for truth quantities is annotated by a hat, for
example p̂aT denotes the truth transverse momentum of particle a.

One approach to mitigate this difficulty is to check the distributions of the truth
quantities after applying the regular analysis selections, which are based on the re-
constructed quantities. By studying the truth distributions one can select a cut value
for the truth quantities, which will not affect the events in the analysis categories.
This approach has been taken to implement cuts on the truth transverse momen-
tum of the tau p̂hadT and the lepton p̂lepT . Based on the distributions in Fig. 6.8, a
threshold of 20 GeV has been introduced for both quantities.

Another approach has been taken to implement a generator filter cut for the
transverse momentum pHT of the Higgs boson. The truth p̂HT distribution at generator
level is a steeply falling curve similarly to the p̂HT distribution at preselection level
shown in Fig. 6.9. The offline selection for transverse momenta of the Higgs boson
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the official inclusive ggF production.
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Table 6.5: Summary of all additional cuts. This includes the generator filter cuts itself,
the cuts necessary to combine the filtered Monte Carlo events with inclusive Monte Carlo
events, and the definition of the new control region.

Production SR Cut CR Cut Applied at

ggF Filtered

p̂hadT > 20 GeV p̂hadT > 20 GeV generator level

p̂lepT > 20 GeV p̂lepT > 20 GeV generator level

p̂HT > 100 GeV p̂HT > 100 GeV generator level

ggF Inclusive p̂HT < 100 GeV p̂HT > 100 GeV analysis level

Table 6.6: Comparison of the raw event count in the boosted analysis category for gluon
fusion signal samples. The numbers are also listed separately for two different parts of phase
space separated by the truth p̂HT .

Sample Boosted with p̂HT > 100 GeV with p̂HT < 100 GeV

ggF Inclusive 6534 5869 665

ggF Filtered 63502 63502 0

is pHT > 100 GeV. The edge at 100 GeV in the distribution of the truth p̂HT is
smeared out due to detector effects. As indicated by the red line in Fig. 6.10 a cut
at generator level has to be at about 40 GeV in order to avoid biasing the signal
regions. According to Fig. 6.9 a truth cut at 40 GeV will not suppress unattained
events as much as desired.

To profit from the high suppression rate of a truth-level selection of p̂HT > 100 GeV
and to prevent biasing the signal region at the same time, the filtered Monte Carlo
sample is combined with the official inclusive Monte Carlo sample. To avoid an ex-
cess of events with truth p̂HT > 100 GeV by “double counting” them, the phase space
covered by the filtered Monte Carlo samples is removed from the official production
by introducing a truth cut p̂HT < 100 GeV exclusively for the official production. The
additional filter cuts are summarized in Tab. 6.5.

The filter efficiency has been determined to ε = 0.02061. The filter efficiency
of τlepτhad final state filter, which is used for the official production, is ε = 0.4548.
Thus, for the same number of produced events, the filtered MC sample provides a
statistical power a factor of 22 larger compared to the official sample. In total 1.8
million filtered events have been produced. About 40 million inclusive events had
to be generated to achieve the same statistical power. The number of events in the
signal region of the inclusive and filtered productions are listed in Tab. 6.6. The
filtered MC sample achieves a ten-fold increase of events in the signal region.

6.4.2 Sample Validation

To validate the privately produced filtered Monte Carlo samples, the modeling is
compared to the official inclusive production. Firstly, the border in phase space,
where inclusive and filtered samples are stitched together, is analyzed, to check if
the transition point is smooth. Secondly, a new control region is defined for this
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Figure 6.10: The two distributions show the truth transverse momentum of the Higgs
p̂HT in the Boosted category of the multivariate analysis. The two plots differ only by their
x-axis range. The red line corresponds to the inclusive ggF production. The blue area
corresponds to the official production with p̂HT > 100 GeV. The error bands corresponds
to the statistical uncertainty of the inclusive sample in the control region. The black dots
represent the filtered production. The ratio plot shows the yield ratio of filtered production
(black dots) over the official production with p̂HT > 100 GeV (blue).

study, by inverting the truth cut to p̂HT > 100 GeV. In this special CR it is possible
to compare the modeling of the filtered Monte Carlo to the official Monte Carlo
production. The cut applied for the control region is also listed in Tab. 6.5.

Figure 6.10 shows the transition point at p̂HT = 100 GeV between the inclusive
Monte Carlo and filtered Monte Carlo in a p̂HT histogram. Below 100 GeV the official
MC will be used in the analysis, above 100 GeV the filtered Monte Carlo will be
used. The blue area corresponds to events from the inclusive sample in the control
region with p̂HT > 100 GeV. Judging from Fig. 6.10, the transition across the border
in phase space is smooth. No discontinuity or kink can be found at p̂HT = 100 GeV,
which is not attributable to the statistical uncertainties. The attention should also
be focused on the size of the error bands of the inclusive sample compared to the
error bar of the filtered sample. The smaller error bars, which are to small to be
visible for most points, in the region of filtered samples, indicate the increase in
statistics, which is gained by using the filtered samples.

In Fig. 6.11 the modeling of the mass variables in the filtered samples is com-
pared to the modeling in the official sample. A clear slope is visible in the ratio plots
for mvis and mMMC. The modeling of other variables does not show any crucial mis-
modeling. The differences in the model between filtered and the official inclusive
production is likely to stem from the fact, that the filtered sample has been simu-
lated with ATLFAST-II, whereas the inclusive Monte Carlo was produced with Full
Simulation.

To improve the modeling of the mass variables mvis and mMMC several reweight-
ing schemes have been tested. In each scheme a kinematic variable v is chosen and
the yield ratio of the inclusive sample over the filtered sample binned in this variable
is fitted by a linear fit of the form w(v) = α+βv. The weights of the filtered Monte
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Figure 6.11: The mass mMMC (left) and the visible mass mvis in the Boosted category
of the multivariate analysis. The red line corresponds to the inclusive ggF production.
The blue area corresponds to the official production with p̂HT > 100 GeV. The error bands
corresponds to the statistical uncertainty of the inclusive sample in the control region. The
black dots represent the filtered production. The ratio plot shows the yield ratio of filtered
production (black dots) over the official production with p̂HT > 100 GeV (blue). The events
are not reweighted.

Carlo events are then multiplied with w(v). This procedure has been performed

independently for v = plepT , phadT ,∆Rlep had with no noticeable improvement for mvis

and mMMC.
To improve the mass modeling it has been decided to use the above reweighting

scheme to reweight mMMC directly. The new event weights of the filtered MC sample
are obtained by the multiplication of the events weights with

w(mMMC) = 1.84028− 0.00703632 · mMMC

GeV
, (6.10)

as described above. The reweighted mass distributions are shown in Fig. 6.12. The
approach to correct mMMC might seem dubious at first glance. However, it should
be noted that this procedure does not involve any data events. The ATLFAST-II
sample is merely adjusted to fit the sample produced with Full Simulation. Also one
should consider that the filtered Monte Carlo will only be used for the BDT training.
These events will not enter the analysis in any other way. No mismodeling in other
variables has been found, which seemed to be responsible for a mismodeling in the
derived quantity mMMC. If there is a residual mismodeling after this correction
procedure in other variables, which might have been the initial cause of the mass
discrepancies, it will not result in physically wrong conclusions in the final analysis.
In the worst case, a mismodeling in the training set can lead to a sub-optimal
classifier, which then leads to a less sensitive analysis. The result of the analysis,
however, will still be valid.

Figure 6.13 shows the modeling of important kinematic variables after applying
the weights from Eq. 6.10. No major discrepancy in the relevant regions can be
found. The reweighted filtered signal samples will therefore be used for the MVA
training.
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Figure 6.12: The mass mMMC (left) and the transverse mass mT in the Boosted category
of the multivariate analysis. The red line corresponds to the inclusive ggF production.
The blue area corresponds to the official production with p̂HT > 100 GeV. The error bands
corresponds to the statistical uncertainty of the inclusive sample in the control region. The
black dots represent the filtered production. The ratio plot shows the yield ratio of filtered
production (black dots) over the official production with p̂HT > 100 GeV (blue). The events
of the filtered production are reweighted to match the mMMC ratio plot.
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Figure 6.13: Important kinematic variables in the Boosted category in the MVA. The
figure shows the reconstructed transverse momentum of the Higgs boson pHT (left) and the
reconstructed angular difference between the lepton and the tau ∆Rlep had. The red line
corresponds to the inclusive ggF production. The blue area corresponds to the official
production with p̂HT > 100 GeV. The error bands corresponds to the statistical uncertainty of
the inclusive sample in the control region. The black dots represent the filtered production.
The ratio plot shows the yield ratio of filtered production (black dots) over the official
production with p̂HT > 100 GeV (blue). The events of the filtered production are reweighted
to match the mMMC ratio plot.
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Table 6.7: Comparison of the raw events in Run 1 and Run 2. The second and third
columns compare the number of events per physics process in each category for Run 2. The
last two columns show the event counts from Run 1 as written in [15]. “–” is used if the
information is not available. The numbers refers to raw, unweighted event counts. The table
is limited to the most important processes. For Boosted in Run 1 the signal event count is
only available as the sum of ggF and VBF. The process ggF denotes the official inclusive
production.

Run 2 Run 1

Process VBF Boosted VBF Boosted

Z → ττ 1834 11355 34588 20728

Z → `` 395 1977 1934 868

Top 724 4397 8024 3773

V V 530 5868 2376 1388

Fake 26396 141287 7051 2867

ggF 960 6534 –
39166

VBF 25804 8403 53978

6.4.3 Impact of Statistics on Training

A large number of training events is a key ingredient for machine learning in particle
physics. The number of available events for each physics process is listed in Tab. 6.7.
It should be noted, that in Run 2 the number of fake events increased by a large
factor, compared to Run 1, where at the same time the number of available signal
events decreased. This means the ratio of signal-over-background events dropped to
about 0.1 in the Boosted category.

The performance of the BDT is limited by the statistics of the smallest training
class, in this case the statistics of the signal processes. To illustrate this, consider
the case of the Boosted category, where only 10% of the events are signal events. A
classifier, that labels all events as background, has a rate of successful classification
of 90%, which could be considered as a good classifier. However, this classifier
did not detect a single signal event, and would be of no use in this analysis. In
the case of BDTs, the small statistics of the signal class limits the complexity of
the boosted decision tree. A boosted decision tree with high complexity learns
random fluctuations in the signal class which leads to overtraining and prevents
reliable classification. The filtered Monte Carlo production for gluon fusion is used
to mitigate the low signal training statistics. The filtered production increases the
number of ggF signal samples in the Boosted category by approximately a factor of
ten, compare Tables 6.6 and 6.7.

To study the effect of different signal training set sizes, a parameter scan has
been performed. The setup of the parameter scan is shown in Tab. 6.8. The usual
parameter configurations are duplicated with different signal training set sizes. Each
signal event is associated with a random number r ∈ [0, 1). The inequality

r < f (6.11)
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Table 6.8: Setup of the parameter scan to investigate the impact of statistics of the signal
training set.

Parameter Value(s)

Cross Validation Sets k 10

Signal Training Fraction f 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

Input Variables Run 1 set, see Tab. 6.4

Training Region regular Boosted

Background (training) all

Background (validation) all

Signal (training) ggF (inclusive + filtered)

Signal (validation) VBF and ggF (inclusive)

Number of Trees 10, 20, 50, 100, 300, 800, 1000, 1200

Max Depth 10

Shrinkage 0.1, 0.5, 1.0

Min Node Size 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 %

is evaluated for each event, in order to construct a signal training set which holds
only the fraction f ∈ [0, 1] of all signal events. All events that satisfy the condition
are included in the set. This means that a set which hold 10% of all events is a
subset of the set which hold 20%.

The BDTs are evaluated on the validation set, which uses only the official Monte
Carlo production. For each BDT a likelihood fit with the reduced set of systematic
uncertainties is carried out, see Sec. 6.2 and Chap. 7. A histogram containing the
fit significances is created for each signal training set size. The effect of the training
set size is studied by comparing the significance distributions. It is difficult to assess
the effect based on the significance distributions. The 10% quantile is derived from
the histograms to capture the information about the best performing BDTs for each
training set size in a single value. A p-quantile is defined by the fit significance
value, which separates the top p BDTs from the rest. Figure 6.14 shows the 10%
quantiles as a function of the training set size. The error bars shown in the figure
correspond to the 15% and 5% quantiles. It should be noted, that this definition of
error bars is arbitrary, and thus the error bars do not correspond to a 1σ confidence
level. Different values for p have been tested, however the overall trend of this
representation does not depend on the particular value of p.

The data points show that the performance of the top ranked BDTs increases
with increasing size of the signal training statistics. The study is however not con-
clusive, whether this trend extends with even larger training statistics, or if a plateau
has already been reached. A deeper investigation would require more Monte Carlo
events which are currently not available.
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Figure 6.14: Comparison of the BDT performance for different sizes of the signal training
set in the Boosted category. The data points show the 10% quantiles. The error bars
correspond to the 5% and 15% quantiles and are therefore not 1σ-error bars.

6.5 Analysis of k-fold Cross Validation

In Sec. 6.1.6 the principle of k-fold cross validation was introduced. This principle
with k = 10 is applied for all studies in this thesis unless otherwise noted. However,
the choice of k = 10 is arbitrary. The study presented in this section investigates
the effect of different values of k. With increasing k, the training set size converges
towards the total amount of Monte Carlo events. Based on Sec. 6.4, one can expect
that the performance increases also with increasing k. The extreme case of k = n
is used in some fields of machine learning, where n denotes the number of training
observations. This would mean, that there is one boosted decision tree for each
event. The application of the technique k = n for this thesis is computationally not
feasible in a reasonable amount of time. It is therefore advisable to limit the number
k of cross validation sets. Since the fraction t of training events approaches the total
number of events with

t = 1− 1

2k
(6.12)

it can be assumed that the performance also approaches a limit and that the gain
at high k values is marginal.

A parameter scan has been performed for the present study. A new axis has
been introduced alongside the regular variable axes in the parameter grid. Different
values for k are tested to study the dependence on the number of cross validation
sets. Similarly to the evaluation procedure in the previous study, the BDTs from the
parameter scan are used on the validation set. A likelihood fit with a reduced set of
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Table 6.9: Setup of the parameter scan to investigate the importance of different numbers
of k in cross validation sets.

Parameter Value(s)

Cross Validation Sets k 3, 5, 7, 10, 13, 16, 20

Input Variables Run 1 set, see Tab. 6.4

Training Region regular VBF

Background (training) all

Background (validation) all

Signal (training) VBF only

Signal (validation) VBF and ggF (incl.)

Number of Trees 10, 20, 50, 100, 200, 400, 800, 1000

Max Depth 10

Shrinkage 0.03, 0.1, 0.3, 0.8

Min Node Size 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 %

systematic uncertainties is used to derive the expected significances, see Sec. 6.2 and
Chap. 7. The significance values are filled in separate histograms, one histogram for
each value of k. As described in Sec. 6.4.3 the 10% quantile is calculated to represent
the performance of the boosted decision trees in a single value. The results are shown
in Fig. 6.15.

From Fig. 6.15 one might read a slight improvement in BDT performance for
increasing k values, however, the question remains, whether this improvement is
significant and not only attributable to statistical fluctuations. This study does not
show that choosing lower or higher k values is beneficial for the analysis. In cases
where computational resources are limited, the choice k = 3 seems valid. However,
for the remainder of this thesis, the choice of k = 10 is unaltered.

6.6 Boosted Decision Tree Optimization

A central component of this thesis is a comparison between the multivariate analysis
and the cut-based analysis. The cut-based analysis has been optimized and studied
intensively in 2016 by the ATLAS HLeptons analysis group. The goal of this section
is to study and optimize the training parameters of the multivariate analysis. The
first two sections study the performance depending on different training regions and
whether it is beneficial to include the fake background in the training. The last
section is about the selection of the boosted decision trees used for the multivariate
analysis. The studies presented in this section all share the same large scale pa-
rameter scan. The setup of this parameter scan is outlined in Tables 6.10 and 6.11.
The complexity of a tree in the boosted decision tree is controlled by the parameter
minimum node size. Various different values for this parameter are tested in the pa-
rameter scan. The depth of a tree in the boosted decision tree is set to a high value,
such that the depth is only limited by the condition on the minimal node size. This
offers more flexibility. Individual paths in the boosted decision tree can extend to
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Figure 6.15: Comparison of the BDT performance for different numbers k of cross vali-
dation sets in the VBF category. The data points show the 10% quantiles. The error bars
correspond to the 5% and 15% quantiles and are therefore not 1σ-error bars.

larger depth if there is still enough statistics. The parameter scan also features the
two axes number of trees and shrinkage. Both interact with the boosting behavior
and control the complexity of the whole boosted decision tree.

6.6.1 Training Region

In Run 1 the training of the BDTs had been performed in regions looser than the
regular MVA regions. The enlarged regions have only been used for the training.
Similarly to the Run 1 procedure, the likelihood fit to evaluate the BDT on the
validation set is performed in the regular MVA regions. The motivation behind this
is, that by enlarging the training regions, the training can benefit from an increase
in statistics. Conversely, if a BDT is trained in an enlarged phase space, it might
excel in separating signal from background in regions of phase space which are not
relevant for the analysis and perform rather badly in the regular MVA regions.

The effect on the training region is studied using the large scale parameter scan
introduced in the previous section. The parameter scan features a variable axis,
which specifies the training region. Following the suggestions from Run 1, the train-
ing for VBF is done in the regular region and repeated in regions with the cuts
mT < 70 GeV and/or ∆ηjj > 3 dropped. Similarly, the training for Boosted is per-
formed in the regular regions and in an enlarged region without the mT < 70 GeV
cut. The BDTs are evaluated on their validation sets. The expected significance
is derived using a likelihood fit with a reduced set of systematic uncertainties, see
Sec. 6.2 and Chap. 7. The fit significances are filled into separate histograms de-
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Table 6.10: Setup of the parameter scan to optimize the multivariate analysis in the VBF
category. The same parameter scan is used to study the impact of the training regions,
whether it is beneficial to include fake events in the training and to select the boosted
decision trees for this analysis.

Parameter Value(s)

Cross Validation Sets k 10

Input Variables Run 1 set, see Tab. 6.4

Training Region VBF: regular, w/o mT, w/o ∆η, w/o ∆η and mT

Background (training) all, w/o fakes

Background (validation) all

Signal (training) VBF only

Signal (validation) VBF and ggF (incl.)

Number of Trees 10, 20, 50, 100, 200, 400, 800, 1000, 1200

Max Depth 15

Shrinkage 0.03, 0.1, 0.3, 0.8, 1

Min Node Size 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 %

Table 6.11: Setup of the parameter scan to optimize the multivariate analysis in the
Boosted category. The same parameter scan is used to study the impact of the training
regions, whether it is beneficial to include fake events in the training and to select the
boosted decision trees for this analysis.

Parameter Value(s)

Cross Validation Sets k 10

Input Variables Run 1 set, see Tab. 6.4

Training Region Boosted: regular, w/o mT

Background (training) all, w/o fakes

Background (validation) all

Signal (training) ggF (incl. + filt.)

Signal (validation) VBF and ggF (incl.)

Number of Trees 10, 20, 50, 100, 200, 400, 800, 1000, 1200

Max Depth 15

Shrinkage 0.03, 0.1, 0.3, 0.8, 1

Min Node Size 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 %
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pending on the training region. The resulting histograms are shown in Fig. 6.16.

The distributions for VBF and Boosted are derived from a grid scan, where
the ∆ηjj cut is dropped show a peak at lower significance values. Also, looking at
the high tails of these two distributions, it is clear that a training region without
the angular cut, is not beneficial for the sensitivity of the analysis. For VBF and
Boosted, there seem to be only minimal differences between the two distributions
derived from parameter scans in the regular regions and in regions enlarged by
dropping the mT cut. This statement is true for the position of the mean and the
extent of the high tails.

The conclusion of this study is that, in terms of sensitivity the cut ∆ηjj > 3
should be applied during training. On the other hand, no general statement about
the mT < 70 GeV cut is possible. Whether it is beneficial to apply this cut during
training, depends on the other training parameters.

6.6.2 Fake Treatment

A similar study has been carried out to investigate whether it is beneficial to in-
clude fake backgrounds in the training. The study follows the prescriptions given
in Sec. 6.6.1. The parameter scan is performed for different background composi-
tions. One variant is to use all background processes for the training, the other is
to exclude fake background during training.

The resulting histograms are shown in Fig. 6.17. In both categories the bulk of
the BDTs seem to scatter at the same values of expected significances. In the VBF
category the distributions are asymmetric. BDTs trained with fake background have
a more pronounced tail at high sensitivity values. In Boosted, however the difference
between the two distributions is smaller and no general statement is possible.

6.6.3 BDT Selection

There are several different methods to select a BDT after a parameter scan has
been performed. One method is to search for a region in parameter space, where
good BDTs accumulate. Since the parameter space is a multi-dimensional space, its
graphical representation is not easy. One method could be to choose two variables as
the axes of a plot, and project the remaining space onto these two axes by averaging
over all other axes in the parameter grid. The average fit significance can then be
represented with a color map. It is possible that the topology in parameter space
could be rather complicated. In that case averaging over many dimensions in pa-
rameter space, could hide important structures or even lead to false interpretations.
This method has been tested at an early stage of the analysis, but no conclusive
trend, or sweet spot in parameter space could be identified.

In this thesis a simplified approach is pursued, to avoid the complications men-
tioned above. The final BDTs, which are used to produce the distributions used in
the final likelihood fit of the analysis, are selected using a ranking of all BDTs by
their significance estimate on the validation set. This approach simply selects the
best BDT for VBF and for Boosted. As discussed in Sec. 6.1.5, it might happen
that the selected BDTs perform exceptionally good on the validation set by chance.
In that case, the selected BDTs could lead to suboptimal sensitivities of the analy-
sis. The selection is based on the performance on the validation set, therefore this
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Figure 6.16: Comparison of BDT performance on the validation set for different train-
ing regions defined by dropping selection criteria in the VBF category (top) and Boosted
category (bottom).



76 Chapter 6. Optimization of the Multivariate Analysis

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
fit significance

0

25

50

75

100

125

150

175

co
un

t /
 b

in

with fake events
without fake events

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
fit significance

0

20

40

60

80

100

co
un

t /
 b

in

with fake events
without fake events

Figure 6.17: Comparison of BDT performance on the validation set for different back-
ground compositions including or excluding events with a fake tau in the VBF category
(top) and the Boosted category (bottom).
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Table 6.12: Parameter listing of the best BDT training configurations.

VBF Boosted

number of trees 50 200

minimum node size 1 1

maximal depth 15 15

shrinkage 0.1 0.3

region drop mT cut regular

background with fakes without fakes

fit significance 1.94 1.19

procedure can not lead to a biased BDT on the test set used in the analysis, which
means that the final result of the analysis is still valid even if the selected BDT are
outliers.

The BDT training parameter configurations in each category with the highest3

fit significance on the validation set are listed in Tab. 6.12. If these numbers are
compared to the training parameters in Run 1 as listed in Ref. [15], one can see, that
in Run 1, the number of trees was higher by a factor of eight and three for VBF and
Boosted, respectively. The shrinkage parameters are similar to the configuration in
Run 1. The depth and minimal node size parameters can not be directly compared,
because in Run 1 the complexity of the tree was limited by a maximum tree depth
as an optimization meta-parameter, while the minimum node size was set to very
small fixed values. In this thesis, the depth is limited by the minimal node size and
the depth is set to a high value to give the BDT training a greater flexibility. The
variable ranking of these two BDTs is shown in Tables 6.13 and 6.14.

6.7 BDT Output and BDT Validation

After a BDT training configuration has been selected for both categories, the BDTs
can be applied to their test sets. The BDT score distributions produced on the
test sets is used as the discriminating variable in the multivariate analysis. The
distributions for both categories are shown in Fig. 6.18. The data entries are blinded
in both distributions for high BDT scores. All data points are removed from the
histogram above a BDT score of 0.4. The VBF BDT shows a strong separation
between background and signal. The fact that the background and signal do not
peak at -1 and 1 is due the relatively low number of trees and shrinkage value. This
is, however, not a problem, since the BDT score itself is an arbitrary measure. The
output distribution in the Boosted category shows also good separation between
background and signal. Both distributions show good agreement between data and
Monte Carlo in the unblinded range.

3Technical difficulties were experienced when the best BDTs were used in the analysis stemming
from large memory consumption, due to a large number of very deep trees in the BDT. If such
difficulties occurred, the BDT is ignored, and the next best BDT configuration is used. This means
the term best actually refers to the best without technical issues.
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Table 6.13: Variable ranking for the selected boosted decision tree in the VBF category
as shown in Tab. 6.12.

Variable Importance

` η centrality 0.2027

Emiss
T φ centrality 0.1983

mMMC 0.1499

mjj 0.1311

∆ηjj 0.1000

mT 0.0679

ptotalT 0.0677

∆Rlep had 0.0625

ηj0 · ηj1 0.0195

Table 6.14: Variable ranking for the selected boosted decision tree in the Boosted category
as shown in Tab. 6.12.

Variable Importance

∆Rlep had 0.2944

mMMC 0.2018

mT 0.1295

plepT /phadT 0.1322

scalar
∑
pT 0.1169

Emiss
T φ centrality 0.1249
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Figure 6.18: Boosted decision tree output score distributions in VBF (left) and Boosted
(right) signal regions.
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In order to validate the boosted decision trees, they have been applied to the
control regions as defined in Sec. 5.7. Figure 6.19 shows the BDT output score dis-
tributions in the VBF categories. Figure 6.20 shows them in the Boosted categories.
Since the signal contribution is negligible in the control regions, no blinding criteria
has been applied to these plots. The distributions show good agreement between
data and Monte Carlo in the control regions given the statistical and systematic
uncertainties.
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Figure 6.19: Boosted decision tree output score distributions in the VBF control regions.
The top row shows the distributions in the top (left) and W (right) control regions. The
bottom row shows the distributions in the QCD (left) and Z (right) control regions.
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CHAPTER 7

Signal Strength Extraction

The signal strength µ is defined as the ratio of the observed H → ττ yield over
the Standard Model prediction. The signal strength for both analysis methods is
extracted with a likelihood fit. The overall fit is carried out for the cut-based analysis
and the multivariate analysis independently. Since this analysis is not approved by
the ATLAS collaboration, the final fit is not using real data events. Instead pseudo
data yields and distributions are built from the background and signal model by
using the expected values assuming the validity of the SM. This is commonly referred
to as an Asimov fit. The first section in this chapter starts by introducing all
systematic variations used for the cut-based analysis and the multivariate analysis.
Secondly, this chapter outlines the fit model used in this thesis. The chapter closes
with a section discussing the results from both fits and thus compares the outcomes
of the two analysis strategies.

7.1 Systematic Uncertainties

Systematic uncertainties play a crucial role when it comes to the sensitivity of the
analysis. They enter the analysis in many different ways. Most of the systematic
uncertainties quantify a lack of precise knowledge about the detector response, the
detector calibration or enter as reconstruction and identification artifacts [19]. The
systematic uncertainties are considered in the analysis by adhering to the following
procedure.

Each systematic uncertainty describes the uncertainty of a specific parameter
of the simulation, reconstruction, calibration, event generation, parton showering,
parton distribution function or another components of the analysis. Each event is
reevaluated for each systematic uncertainty under varied conditions. This means
the events are reprocessed by taking the +1σ and −1σ variations of the parameter
under consideration. The distributions that enter the fit are available in multiple
version, one version for each systematic variation. This can be viewed as a numer-
ical approximation of partial derivatives. The distributions for the up and down
variations quantify the change of the distribution by varying the parameter up and
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down by one standard deviation. Since simultaneous variations of two parameters
are not considered, this procedure is only correct if the variations are not physically
correlated.

Systematic variations can usually be classified in two categories: weight system-
atic uncertainties and kinematic systematic uncertainties. The former kind affects
only the event weight. These systematic uncertainties do not change the kinematic
variables of an event. It is not necessary to reprocess the event, since the nominal
event can be reused with a different weight. The latter kind of systematic varia-
tions are computationally more difficult, because this kind of systematic uncertainty
changes the kinematic variables of the event. All the events have to be reprocessed
for each kinematic variation.

Looking from a different perspective, most systematic uncertainties can also be
classified into three categories: systematics affecting the resolution of the measure-
ment, the scale of the momentum or energy measurement, or the efficiency to select
or reject individual objects (leptons, taus, jets) and therefore to select or reject the
event.

The application of the systematic uncertainties follows the ICHEP 2016 recom-
mendations of each of the ATLAS combined performance groups. In the following
the experimental systematic uncertainties are listed separately for these three cate-
gories. The list is split into several sections depending on the object the systematic
uncertainty concerns. Some systematic uncertainties stem from a statistical fluctu-
ation, but since they affect the analysis as a whole, they are turned into systematic
uncertainties.

7.1.1 Muon Uncertainties

Systematic uncertainties related to muons enter the analysis via the muon from the
leptonic τ decay. Trigger efficiencies change the total yield of the muons. Scale and
resolution uncertainties have an impact on mMMC, since it is calculated using the
momentum of the lepton. The following list describes all systematic uncertainties
stemming from muons.

Resolution uncertainties of the inner detector tracks (MUONS ID, up/down) and
muon spectrometer tracks (MUONS MS, up/down).

Scale uncertainties of the muon momentum measurement (MUONS SCALE, up/down)

Efficiency uncertainties originate from different components. The Muon triggers
used in 2015 and 2016 consist of systematic and statistical uncertainties (MU
ON EFF Trig[Syst|Stat][2015|2016], up/down). The uncertainties on the
identification efficiencies are composed of a statistical and a systematic part
(MUON EFF [STAT|SYS], up/down). Additionally there are the uncertainties
stemming from the isolation requirement (MUON ISO [STAT|SYS], up/down)
and from the track-to-vertex association (MUON EFF TTVA [STAT|SYS], up/
down).
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7.1.2 Electron Uncertainties

The systematic variations for electrons follow the single-nuisance-parameter scheme
(“total”). The systematic uncertainties of the electrons enter the analysis in a similar
way as in the case for muons. Additionally, electrons, unlike muons, can be falsely
reconstructed as τhad. The mMMC calculation with wrong particle settings, results in
incorrect results. The background from misidentified electrons peaks in the mMMC

range close to the signal region, see Figures 5.2 and 5.3. This means that a variation
of the electron related systematic uncertainties are likely to have a large effect on
the signal strength. The following list describes systematic uncertainties stemming
from electrons in the analysis.

Resolution uncertainty of electrons (EG RESOLUTIONS ALL, up/down).

Scale uncertainties of the energy of electrons have several independent sources stem-
ming from different detector components (EG SCALE E4SCINTILLATOR, EG SC

ALE LARCALIB EXTRA2015PRE and EG SCALE LARTEMPERATURE EXTRA[2015

|2016]PRE, all up/down). Other uncertainties affecting the energy scale of
the electrons are combined into a single uncertainty (EG SCALE ALLCORR, up/
down).

Efficiency uncertainties are introduced for different components of the analysis.
Systematic variations are calculated for the uncertainties on the trigger effi-
ciency (EL EFF TRIG TOTAL), on the reconstruction efficiency (EL EFF RECO T

OTAL), on the identification efficiency (EL EFF ID TOTAL) and on the efficiency
of the isolation requirement (EL EFF ISO TOTAL).

7.1.3 Tau Uncertainties

The systematic uncertainties related to hadronic τ leptons affect the analysis in a
similar way as in the case of muons. The following list describes systematic uncer-
tainties stemming from taus in the analysis.

Scale uncertainties affecting the energy scale, stemming from the detector (TAU T

ES DETECTOR, up/down), in-situ measurements (TAU TES INSITU, up/down)
and modeling and closure tests (TAU TES MODEL, up/down).

Efficiency uncertainties are introduced from different components of the analysis.
Systematic variations are calculated for the uncertainties on the trigger ef-
ficiency (TAU TRIG STAT[DATA|MC] and TAU TRIG [SYST|TOTAL2016], both
up/down), the tau reconstruction efficiency (TAU EFF RECO [TOTAL|HIGHPT],
up/down), the electron overlap removal (TAU EFF ELEOLR TRUE[ELECTRON|HA

DTAU], up/down) and the jet identification/rejection (TAU EFF ID [TOTAL|HI

GHPT], up/down).

7.1.4 Jet Uncertainties

Systematic uncertainties of jets affect the analysis in two ways. The selection cuts
for the VBF category depend directly on jet related quantities. Since the Boosted



86 Chapter 7. Signal Strength Extraction

region depends on an event failing the VBF criteria, the Boosted category is indi-
rectly affected by these systematic uncertainties. Variations in the energy scale or
resolution can lead to migrations between the two categories. A second mechanism
how jet related uncertainties enter the analysis is via Emiss

T . The missing trans-
verse energy Emiss

T is the momentum needed to balance all visible parts of the event.
Changes in jet related quantities affect the momentum necessary to balance these
jets. The analysis is affected by these systematics, because Emiss

T is included in the
mMMC calculation. The following list describes systematic uncertainties stemming
from jets in the analysis.

Resolution uncertainties for the jet energy are combined in a single nuisance pa-
rameter (JER, one-sided)

Scale uncertainties affecting the jet energy scale have several different sources. The
general systematics affecting the jet energy scale are combined in 6 effective
nuisance parameters (JES EffectiveNP [1-6]). More specific systematic vari-
ations are introduced to consider effects related to b-jets (JES BJES Respons

e, up/down), an η-dependence (JES EtaInter Model, JES EtaInter NonClo

sure and JES EtaInter TotalStat, all up/down), the particle flavors (JES F

lavor Comp and JES Flavor Resp, both up/down), pile-up (JES PU OffsetM

u, JES PU OffsetNPV, JES PU PtTerm and JES PU RhoTopology, all up/down)
and other effects (JES PunchThrough MC15 and JES SingleParticle HighP

t, both up/down).

Efficiency uncertainties cover two main uncertainties. Firstly a systematic un-
certainty for the jet vertex tagger (JVT, up/down) is introduced. Secondly
efficiency uncertainties for flavor tagging are introduced. In total 14 effective
systematic variations are introduced related to b tagging (btag b [0-2], bt
ag c [0-3], btag light [0-4] and btag extrapolation[ from charm], all
up/down).

7.1.5 Missing Transverse Energy Uncertainties

Since Emiss
T describes missing transverse energy, Emiss

T is also affected by other sys-
tematic uncertainties, such as the uncertainties stemming from jets. The systematics
specifically for Emiss

T stem from jets below a certain threshold, which are not consid-
ered as proper jets. These soft tracks, however, contribute to the missing transverse
energy. The following list describes systematic uncertainties stemming from Emiss

T

in the analysis.

Resolution uncertainties related to missing transverse energy (MET SoftTrk Reso

Para and MET SoftTrk ResoPerp, both one-sided)

Scale uncertainties affecting the missing transverse energy (MET SoftTrk Scale,
up/down)

7.1.6 Pile-Up Uncertainty

As explained in Sec. 4.4 pile-up events are simulated by mixing the detector response
with simulated pile-up events. The Monte Carlo has to be reweighted to match the
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observed pile-up profile. A nuisance parameter (PRW DATASF, up/down) is introduced
to cover the uncertainties of this procedure. The kinematic variables should not
depend on the pile-up conditions. Such a dependence might manifest itself as an
impact of this systematic uncertainties.

7.1.7 Luminosity Uncertainty

The uncertainties of the luminosity for the data set used in this analysis has been
determined by ATLAS luminosity working group using the methodology described
in Ref. [32]. The uncertainty on the luminosity measurement is 2.9 % and can be
considered uncorrelated between 2015 and 2016. The luminosity uncertainties act
as an overall weight uncertainty.

7.1.8 Background Model Uncertainties

The background model for events including jets faking taus is detailed in Sec. 5.3.5.
The statistical uncertainties σN =

√
N of the yields N in Eq. (5.11) affect the analy-

sis as systematic uncertainties. The statistical uncertainties are therefore propagated
to the fake factor f as σf with Gaussian error propagation. Systematic variations
are then calculated for f±σf . To account also for uncertainties of RQCD, a variation
of RQCD by ±50% is introduced. However, the variation of 50% is arbitrary. The
other Ri are scaled to satisfy the equation

∑
iRi = 1. Both variations, the statistical

variation of f and the variation of RQCD are combined to form a single nuisance
parameter (lh fake, up/down).

Theory uncertainties of the Z+jets backgrounds are derived using systematic
variations from Monte Carlo samples generated with Sherpa. To apply the variation
to Madgraph samples, the relative variation of the corresponding Sherpa sample is
determined. These variations are associated with the nuisance parameters for the
factorization scale (Theo Ztt fac, up/down) and the renormalization scale [19] (Th
eo Ztt ren up/down).

7.1.9 Signal Modeling Uncertainties

The uncertainty on the Higgs production cross-section is taken from [21] assuming
the Higgs mass mH = 125.09 GeV. The QCD scale uncertainties are assumed to be
4.0% for gluon fusion and 2.1% for vector boson fusion. The cross-section uncer-
tainties stemming from the Parton Distribution Function (PDF) uncertainties are
±3.3% and ±2.2% for ggF and VBF respectively. The uncertainty of the branching
ratio of H → ττ is +1.17%

−1.16%.

7.2 Fit Model

The signal strength µ is extracted with a binned likelihood fit taking all systematic
uncertainties into account. The fit model is similar for the cut-based analysis and the
multivariate analysis in order to achieve comparability. In the following a simplified
description of the fit model is given. The details of the fit model and the fitting
algorithms are beyond the scope of this thesis.
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The input of the fit is a collection of histograms. The histograms in the signal
regions show the distribution of the discriminating variable. In the case of the cut-
based analysis this is mMMC, in case of the multivariate analysis this is the boosted
decision tree output score. In the cut-based analysis the signal regions are VBF
tight and loose, and Boosted high and low. In the multivariate analysis the signal
regions are the inclusive VBF and Boosted regions. The top control region is used
to constrain the normalization of top processes, therefore a histogram with only a
single bin corresponding to the total yield is used in the control region.

The fit uses Asmiov data, which means that the nominal background plus signal
expectation is used as data. The fit input consists of one histogram for each signal
region and control region with these pseudo data distributions. The input includes
also histograms for the background and signal estimation. This means that, similarly
to the data histograms, one histogram for each region is used with the nominal
background distributions. The same set of histograms is included in the input for
the expected signal events.

In order to take systematic uncertainties into account, the set of histograms
of the background and signal is duplicated for each systematic variation (up and
down). For each systematic uncertainty i a free, continuous parameter θi is intro-
duced, commonly referred to as nuisance parameter. A technique called moment
morphing is employed to interpolate between the ±1σ variations. A non-zero nui-
sance parameter means that the distributions of the background and signal models
are shifted towards the corresponding systematic variation. All nuisance parameters
are combined into the vector θ = (θ1, θ2, . . . ). The background and signal models
are therefore available as a function of the nuisance parameters θ.

Finally the signal strength parameter µ is defined. The parameter µ scales the
contribution of the signal. The value of µ = 1 corresponds to the Standard Model
expectation. The choice µ = 0 corresponds to the background-only hypothesis.

The heart of the fit is a likelihood function L which simultaneously quantifies the
likeliness of two aspects. Firstly it quantifies how likely it is to have a certain choice of
θ given the initial systematic uncertainties. Secondly L quantifies how likely it is to
get the data observation from a random experiment given the statistical uncertainties
of the background and signal model. For technical reasons it is beneficial to consider
the negative logarithm of the likelihood function (NLL). The fit procedure consists of
minimizing the NLL function (maximizing the likelihood) by varying the parameters
θ and µ.

By minimizing the NLL function the fit finds the most probable values of the
parameters θ and µ . The curvature (i.e. the second derivatives) of the NLL with
respect to the parameters θ indicate how strong this analysis is able to constrain
the systematic variations. Since each systematic variation has an initial uncertainty,
one is able to compare the initial uncertainty with the uncertainty derived from the
fit. It can be a sign of a problem in the analysis, if the fit constrains the nuisance
parameters more than what was expected from the pre-fit systematic uncertainties.

Another important test is to check how strong the best µ value depends on the
variation of a systematic nuisance parameters θi. The systematic variations can be
ranked by their impact on µ. This gives valuable information how to improve the
sensitivity of the analysis.

The minimization of NLL is performed twice. The first round is an unconditional
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Figure 7.1: Linear correlation coefficients between the systematic variations for the cut-
based analysis. Systematic uncertainties with absolute correlations coefficients below 25%
are pruned away for this visualisation. The signal strength µ is denoted by SigXsecOverSM.

fit, what means that parameters θ and µ are free and can both be varied during
the minimization. For the second round, the signal strength is constrained to µ =
0, which corresponds to the background only hypothesis. By comparing the two
minima of the NLL, one can derive the significance, which measures the probability
that the observed distributions is not random fluctuation of the background-only
hypothesis. Let Lmin denote the minimal value of the likelihood function L from the
unconditional fit and Lcond denote the minimal value from the conditional fit with
µ = 0. The significance Z is then defined as

Z =
√

2 · (logLmin − logLcond). (7.1)

7.3 Fit Result

The fit described in the previous section was performed separately for the cut-based
analysis and the multivariate analysis.

As described in Sec. 7.1, it is assumed that the systematic variations are not
statistically correlated. Figures 7.1 and 7.2 shows the linear correlation coefficients
between the effect of the systematics variations as a color map. In this context
the distinction between causation and correlation is important. The effects of two
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Figure 7.2: Linear correlation coefficients between the systematic variations for the multi-
variate analysis. Systematic uncertainties with absolute correlations coefficients below 25%
are pruned away for this visualisation. The signal strength µ is denoted by SigXsecOverSM.
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systematic variations can be linearly correlated, even though they are statistically
independent1. The correlation plots in Figures 7.1 and 7.2 give insight into the
analysis and offers a cross check of the systematic variations.

For both CBA and MVA the top and Z normalizations are positively correlated
between Boosted and VBF. It seems questionable how this correlation can occur
across the categories, since each has an independent normalization. However, if
the normalization is changed in one category, other nuisance parameters adjust, to
compensate for this, which then also affects the other category.

The normalization factors for top and Z are stronger correlated to the system-
atic uncertainties of τ identification and reconstruction efficiencies for the cut-based
analysis than for the multivariate analysis. It seems quite natural that a varia-
tion of the τ identification and reconstruction efficiency affects the normalization
of background processes with a τ . Furthermore, both analyses show a correlation
between the top normalization and systematic variations related to b-tagging. This
is expected, since the b-veto cut is applied to remove background from tt̄ events. In
addition, in both analysis methods the systematic uncertainties related to the jet
energy scale also show a correlation. It is not surprising to see correlated effects of
systematic variations, which are all related to the same object.

In the cut-based analysis, there is a strong negative correlation between the jet
energy resolution and the Z normalization in VBF. The reason for this might be
event migration into the VBF region when applying this variation.

The multivariate analysis shows a much stronger correlation between the Z nor-
malization and the fake uncertainty in the boosted category compared to the cut-
based analysis. This might be explained by the shape difference between the mMMC

used for the CBA and the BDT output score for the MVA. The ratio of Z and fake
in the output score in the Boosted category is almost constant over the full range,
see Fig. 6.18. A change in the fake contribution can be compensated by the Z nor-
malization directly. In contrast to this, in the cut-based analysis a variation of the
fake contribution can be constrained by the sidebands of the mMMC distribution.

Figures 7.3 and 7.4 show the comparison of pre fit and post fit systematic un-
certainties. This kind of plot is commonly referred to as pull plot. The points are
all aligned on the central line, because Asimov data was used for this fit. The pull
plot for the cut-based analysis shows several constrained nuisance parameters, for
example the jet energy resolution, jet energy scale related systematic variations and
pile-up reweighting. The reason for these constraints is not completely understood
and is beyond the scope of this thesis. The pull plot of the multivariate analysis
shows similar constraints. The constraints from the CBA are also present in the
MVA. In contrast to the CBA, the MVA shows slight constraints for Emiss

T related
systematic variations.

Figures 7.5 show the ranking of the systematic uncertainties with the highest
impact on the signal strength. The highest ranked uncertainty is JES flavor com-
position. Even though the nuisance parameter is constraint, it has the strongest
effect on µ. This systematic uncertainty was not used in the fit to assess the BDT

1If two variables are statistically independent, it means that their joint probability density func-
tion factorizes into two independent probability density functions [33]. There is no statistical
correlation between these two variables in that case. If, for example, both variations increase the
trigger efficiency, the effect of both variations will be similar. Their effects can therefore be linearly
correlated.
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Figure 7.3: Pull plot of the cut-based analysis. The green band shows the pre-fit 1σ
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Figure 7.4: Pull plot of the multivariate analysis. The green band shows the pre-fit 1σ
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Table 7.1: Summary of the sensitivity of the cut-based analysis and the multivariate
analysis.

CBA MVA

Significance Z 1.25 1.63

Uncertainty on µ ±0.80 ±0.66

performance. The optimization described in Sec. 6.6 could be improved by including
this systematic uncertainty in the fit with the reduced set of systematic variations.

Table 7.1 shows the expected significances for both analysis methods derived
from the Asmiov fit. The expected significance of the multivariate analysis is about
30% higher than the expected significance of the cut-based analysis.

The multivariate analysis is able to outperform the cut-based analysis in terms
of sensitivity. The reason for this can be understood by inspecting the top ranked
input variables of the boosted decision trees. Two very important variables are
` η centering and Emiss

T φ centrality, which capture the event topology and have a
large discriminating power. The event selection in the cut-based analysis uses the
angular information of ∆Rlep had, ∆ηlep had and ∆ηjj , whose discriminating powers
are inferior to the selection criteria of the multivariate analysis. Furthermore, the
multivariate analysis is able to utilize correlations between the input variables, see
Figures 6.6 and 6.7, which contributes to the power of the multivariate analysis.
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CHAPTER 8

Conclusion

This thesis described a multivariate analysis to search for Higgs boson decays with
the two τ leptons in the final state. The analysis was limited to the H → τlepτhad
decay channel. Filtered Monte Carlo samples have been generated, to increase the
training statistics in the Boosted category by a factor of approximately ten. The
sensitivity of the multivariate analysis has been enhanced by optimizing the BDT
training parameters and configuration. The boosted decision trees could be validated
by inspecting their behaviour in the control regions. As a comparison a cut-based
analysis has also been presented. A likelihood fit has been performed for both
analysis methods. The expected significance of the cut-based analysis has been
determined to

ZCBA = 1.25. (8.1)

The expected significance of the multivariate analysis could be increased to

ZMVA = 1.62, (8.2)

therefore the presented multivariate analysis shows a 30% improvement in expected
significance over the presented cut-based analysis. Although intensive studies for
the multivariate analysis have been carried out, there is still room for improvement
in the future.

The most pressing aspect is that this thesis used a partial dataset with an in-
tegrated luminosity of Lint = 13.2 fb−1. During the writing of this thesis the full
dataset from 2015 and 2016 has become available for this analysis. With an inte-
grated luminosity of Lint = 36.1 fb−1, the full dataset offers almost three times as
many data.

Another aspect which could be improved in the future is the choices of BDT
training parameter configurations in a grid scan. The spacing of the grid scans for
the multivariate analysis optimization was rather coarse. In the future a two step
procedure could be employed, which adds a fine grid spacing to regions of interest
identified by a coarser scan.
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The nuisance parameter rankings show the dependence of the signal strength
on a certain systematic uncertainty. The ranking shows a large dependence of the
JES flavor composition. During the multivariate analysis optimization the perfor-
mance has been assessed with a likelihood fit, which did not include the JES flavor
composition uncertainties. A revised optimization procedure could also take this
uncertainty into account and find a BDT more aware of this systematic uncertainty.

During the multivariate analysis optimization it became apparent that the small
size of the signal event set has a negative effect on the training and thus on the
performance of the boosted decision trees. This problem has been mitigated with
a privately produced filtered Monte Carlo production for the Boosted category. At
this time it would most likely also be beneficial to increase the sample set size for
background and VBF signal events. The full dataset from 2015 and 2016 mentioned
above comes also with a new production of background and signal Monte Carlo. For
background the production consists of filtered Monte Carlo events with increased
statistics for the Z boson samples. A dedicated generator filter for VBF signal Monte
Carlo can be used to increase the signal training statistics in the VBF category. It
can therefore be assumed that the multivariate analysis can benefit from the new
samples and might improve further in the future.

The boosted decision trees themselves offer further potential improvements. The
software library used in this thesis defines more parameters to control the boosted
decision tree training than were used for the multivariate analysis optimization. One
approach can be to check if these parameters lead to improved training. Since the
last update the this software package was in 2013, another alternative would be to
use the Python package scikit-learn, which has become very popular in the machine
learning community.

The analysis of H → ττ is not limited to cross section and signal strength
measurements. In the future differential cross section measurements or Higgs boson
mass measurements with a two-dimensional fit will be pursued. For these kinds of
analyses it might be desirable to have a boosted decision tree which does not use
mMMC as one of its input variables. Since mMMC is one of the most important
variables to discriminate against Z background, this will be a challenging task for
the multivariate analysis.

“The important thing is not to stop questioning.
Curiosity has its own reason for existence.”

— Albert Einstein



APPENDIX A

Control Regions

Figures A.1, A.2 and A.3 show selected distributions in the W , Z and QCD control
regions. Similar distributions for the top control region are shown in Fig. 5.4 in
Sec. 5.7.
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Figure A.1: Selected distributions in the W control region. The error bands include
statistical and systematic uncertainties. All plots show the mass mMMC, except the top right
plot which shows mT. The top row shows the distributions after applying the preselection
cut. The middle row shows the distributions for the VBF categories of the CBA (left) and
MVA (right). The bottom row shows the distributions for the Boosted category of the CBA
(left) and the MVA (right).
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Figure A.2: Selected distributions in the Z control region. The error bands include sta-
tistical and systematic uncertainties. All plots show the mass mMMC, except the top right
plot which shows the mass of the di-lepton system m``. The top row shows the distributions
after applying the preselection cut. The middle row shows the distributions for the VBF
categories of the CBA (left) and MVA (right). The bottom row shows the distributions for
the Boosted category of the CBA (left) and the MVA (right).
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Figure A.3: Selected distributions in the QCD control region. The error bands include
statistical and systematic uncertainties. All plots show the mass mMMC, except the top
right plot which shows the transverse momentum of the leading jet pj0T , where entries with

pj0T = 0 GeV indicate that no jet with pj0T ≥ 20 GeV was present in the event. The top
row shows the distributions after applying the preselection cut. The middle row shows the
distributions for the VBF categories of the CBA (left) and MVA (right). The bottom row
shows the distributions for the Boosted category of the CBA (left) and the MVA (right).



APPENDIX B

Variable Ranking

Section 6.3 describes a parameter scan using 47 input variables. Tables B.1 and
B.2 show the importance ranking of the input variables derived from this parameter
scan for the VBF and Boosted category, respectively. The final input variables have
been selected based on the combination of the results from Run 1 and this variable
ranking.
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Table B.1: Full variable ranking derived from an averaged grid scan for VBF. Variables,
which are annotated with •, are used for the main analysis in this thesis.

Variable Importance

mjj • 0.0946

` η centrality • 0.0890

mMMC • 0.0866

∆ηjj • 0.0525

Emiss
T φ centrality • 0.0509

∆ηlep had 0.0492

∆Rlep had • 0.0447

ptotalT • 0.0421

mlep had
vis 0.0366

njets 0.0311

mT • 0.0266

Emiss
T 0.0223

ητ 0.0206

pτT 0.0188

∆φlep had 0.0160

h3 0.0155

plepT /phadT 0.0150

ηj0 · ηj1 • 0.0149

pHT 0.0140

ηj1 0.0137

h4 0.0127

ηlep 0.0123∑
jets pT 0.0121

pj1T 0.0120

Variable Importance

h8 0.0115

φj1 0.0110

ηj0 0.0104

φj0 0.0102

pj0T 0.0100

φj0 0.0097

φlep 0.0096

|plepT + phadT | 0.0096

h2 0.0094

h6 0.0094

φE
miss
T 0.0093

∆plep had
T 0.0093

scalar
∑
pT 0.0092

h7 0.0090

nelectrons 0.0090

h1 0.0089

h5 0.0087

plepT 0.0081

plepT + phadT 0.0074

nmuons 0.0065

xcollin0 0.0041

xcollin1 0.0030

tight lepton id. 0.0009
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Table B.2: Full variable ranking derived from an averaged grid scan for Boosted. Variables,
which are annotated with •, are used for the main analysis in this thesis.

Variable Importance

mMMC • 0.2256

mlep had
vis 0.1084

∆Rlep had • 0.0898

Emiss
T φ centrality • 0.0768

plepT /phadT • 0.0402

∆φlep had 0.0382

∆ηlep had 0.0333

mT • 0.0283

Emiss
T 0.0266

pτT 0.0188

∆plep had
T 0.0165

ηlep 0.0159

h3 0.0152

scalar
∑
pT • 0.0142

ητ 0.0140

|plepT + phadT | 0.0127

h2 0.0121

ptotalT 0.0120

ηj0 0.0112

njets 0.0102

pHT 0.0100

plepT 0.0099

pj0T 0.0082

ηj0 · ηj1 0.0080

Variable Importance

h1 0.0078

h4 0.0076∑
jets pT 0.0072

h8 0.0072

φj0 0.0072

ηj1 0.0071

φj0 0.0070

nelectrons 0.0069

pj1T 0.0069

plepT + phadT 0.0069

φlep 0.0068

φE
miss
T 0.0067

h7 0.0065

∆ηjj 0.0064

h5 0.0063

φj1 0.0061

` η centrality 0.0061

nmuons 0.0057

h6 0.0057

mjj 0.0051

xcollin0 0.0041

xcollin1 0.0033

tight lepton id. 0.0008
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